Home | History | Annotate | Line # | Download | only in fpu
fpu_emu.h revision 1.2
      1 /*	$NetBSD: fpu_emu.h,v 1.2 1994/11/20 20:52:39 deraadt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * Floating point emulator (tailored for SPARC, but structurally
     49  * machine-independent).
     50  *
     51  * Floating point numbers are carried around internally in an `expanded'
     52  * or `unpacked' form consisting of:
     53  *	- sign
     54  *	- unbiased exponent
     55  *	- mantissa (`1.' + 112-bit fraction + guard + round)
     56  *	- sticky bit
     57  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     58  * always nonzero.  Additional low-order `guard' and `round' bits are
     59  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     60  * into four 32-bit words, with `spare' bits left over in the upper part
     61  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     62  * number is thus kept within the half-open interval [1.0,2.0) (but see
     63  * the `number classes' below).  This holds even for denormalized numbers:
     64  * when we explode an external denorm, we normalize it, introducing low-order
     65  * zero bits, so that the rest of the code always sees normalized values.
     66  *
     67  * Note that a number of our algorithms use the `spare' bits at the top.
     68  * The most demanding algorithm---the one for sqrt---depends on two such
     69  * bits, so that it can represent values up to (but not including) 8.0,
     70  * and then it needs a carry on top of that, so that we need three `spares'.
     71  *
     72  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     73  * whole words from the mantissa into it.
     74  *
     75  * All operations are done in this internal extended precision.  According
     76  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     77  * it is OK to do a+b in extended precision and then round the result to
     78  * single precision---provided single, double, and extended precisions are
     79  * `far enough apart' (they always are), but we will try to avoid any such
     80  * extra work where possible.
     81  */
     82 struct fpn {
     83 	int	fp_class;		/* see below */
     84 	int	fp_sign;		/* 0 => positive, 1 => negative */
     85 	int	fp_exp;			/* exponent (unbiased) */
     86 	int	fp_sticky;		/* nonzero bits lost at right end */
     87 	u_int	fp_mant[4];		/* 115-bit mantissa */
     88 };
     89 
     90 #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
     91 #define	FP_NG		2		/* number of low-order guard bits */
     92 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     93 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     94 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
     95 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
     96 
     97 /*
     98  * Number classes.  Since zero, Inf, and NaN cannot be represented using
     99  * the above layout, we distinguish these from other numbers via a class.
    100  * In addition, to make computation easier and to follow Appendix N of
    101  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
    102  */
    103 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    104 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    105 #define	FPC_ZERO	0		/* zero (sign matters) */
    106 #define	FPC_NUM		1		/* number (sign matters) */
    107 #define	FPC_INF		2		/* infinity (sign matters) */
    108 
    109 #define	ISNAN(fp)	((fp)->fp_class < 0)
    110 #define	ISZERO(fp)	((fp)->fp_class == 0)
    111 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    112 
    113 /*
    114  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    115  * to the `more significant' operand for our purposes.  Appendix N says that
    116  * the result of a computation involving two numbers are:
    117  *
    118  *	If both are SNaN: operand 2, converted to Quiet
    119  *	If only one is SNaN: the SNaN operand, converted to Quiet
    120  *	If both are QNaN: operand 2
    121  *	If only one is QNaN: the QNaN operand
    122  *
    123  * In addition, in operations with an Inf operand, the result is usually
    124  * Inf.  The class numbers are carefully arranged so that if
    125  *	(unsigned)class(op1) > (unsigned)class(op2)
    126  * then op1 is the one we want; otherwise op2 is the one we want.
    127  */
    128 #define	ORDER(x, y) { \
    129 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    130 		SWAP(x, y); \
    131 }
    132 #define	SWAP(x, y) { \
    133 	register struct fpn *swap; \
    134 	swap = (x), (x) = (y), (y) = swap; \
    135 }
    136 
    137 /*
    138  * Emulator state.
    139  */
    140 struct fpemu {
    141 	struct	fpstate *fe_fpstate;	/* registers, etc */
    142 	int	fe_fsr;			/* fsr copy (modified during op) */
    143 	int	fe_cx;			/* exceptions */
    144 	struct	fpn fe_f1;		/* operand 1 */
    145 	struct	fpn fe_f2;		/* operand 2, if required */
    146 	struct	fpn fe_f3;		/* available storage for result */
    147 };
    148 
    149 /*
    150  * Arithmetic functions.
    151  * Each of these may modify its inputs (f1,f2) and/or the temporary.
    152  * Each returns a pointer to the result and/or sets exceptions.
    153  */
    154 struct	fpn *fpu_add(struct fpemu *);
    155 #define	fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
    156 struct	fpn *fpu_mul(struct fpemu *);
    157 struct	fpn *fpu_div(struct fpemu *);
    158 struct	fpn *fpu_sqrt(struct fpemu *);
    159 
    160 /*
    161  * Other functions.
    162  */
    163 
    164 /* Perform a compare instruction (with or without unordered exception). */
    165 void	fpu_compare(struct fpemu *, int);
    166 
    167 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    168 struct	fpn *fpu_newnan(struct fpemu *);
    169 
    170 /*
    171  * Shift a number right some number of bits, taking care of round/sticky.
    172  * Note that the result is probably not a well-formed number (it will lack
    173  * the normal 1-bit mant[0]&FP_1).
    174  */
    175 int	fpu_shr(struct fpn *, int);
    176 
    177 /* Conversion to and from internal format -- note asymmetry. */
    178 int	fpu_itofpn(struct fpn *, u_int);
    179 int	fpu_stofpn(struct fpn *, u_int);
    180 int	fpu_dtofpn(struct fpn *, u_int, u_int);
    181 int	fpu_xtofpn(struct fpn *, u_int, u_int, u_int, u_int);
    182 
    183 u_int	fpu_fpntoi(struct fpemu *, struct fpn *);
    184 u_int	fpu_fpntos(struct fpemu *, struct fpn *);
    185 u_int	fpu_fpntod(struct fpemu *, struct fpn *);
    186 u_int	fpu_fpntox(struct fpemu *, struct fpn *);
    187 
    188 void	fpu_explode(struct fpemu *, struct fpn *, int, int);
    189 void	fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
    190