Home | History | Annotate | Line # | Download | only in fpu
fpu_emu.h revision 1.5
      1 /*	$NetBSD: fpu_emu.h,v 1.5 2001/12/04 00:05:04 darrenr Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_emu.h	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 #if defined(_KERNEL_OPT)
     48 #include "opt_sparc_arch.h"
     49 #endif
     50 
     51 /*
     52  * Floating point emulator (tailored for SPARC, but structurally
     53  * machine-independent).
     54  *
     55  * Floating point numbers are carried around internally in an `expanded'
     56  * or `unpacked' form consisting of:
     57  *	- sign
     58  *	- unbiased exponent
     59  *	- mantissa (`1.' + 112-bit fraction + guard + round)
     60  *	- sticky bit
     61  * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
     62  * always nonzero.  Additional low-order `guard' and `round' bits are
     63  * scrunched in, making the entire mantissa 115 bits long.  This is divided
     64  * into four 32-bit words, with `spare' bits left over in the upper part
     65  * of the top word (the high bits of fp_mant[0]).  An internal `exploded'
     66  * number is thus kept within the half-open interval [1.0,2.0) (but see
     67  * the `number classes' below).  This holds even for denormalized numbers:
     68  * when we explode an external denorm, we normalize it, introducing low-order
     69  * zero bits, so that the rest of the code always sees normalized values.
     70  *
     71  * Note that a number of our algorithms use the `spare' bits at the top.
     72  * The most demanding algorithm---the one for sqrt---depends on two such
     73  * bits, so that it can represent values up to (but not including) 8.0,
     74  * and then it needs a carry on top of that, so that we need three `spares'.
     75  *
     76  * The sticky-word is 32 bits so that we can use `OR' operators to goosh
     77  * whole words from the mantissa into it.
     78  *
     79  * All operations are done in this internal extended precision.  According
     80  * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
     81  * it is OK to do a+b in extended precision and then round the result to
     82  * single precision---provided single, double, and extended precisions are
     83  * `far enough apart' (they always are), but we will try to avoid any such
     84  * extra work where possible.
     85  */
     86 struct fpn {
     87 	int	fp_class;		/* see below */
     88 	int	fp_sign;		/* 0 => positive, 1 => negative */
     89 	int	fp_exp;			/* exponent (unbiased) */
     90 	int	fp_sticky;		/* nonzero bits lost at right end */
     91 	u_int	fp_mant[4];		/* 115-bit mantissa */
     92 };
     93 
     94 #define	FP_NMANT	115		/* total bits in mantissa (incl g,r) */
     95 #define	FP_NG		2		/* number of low-order guard bits */
     96 #define	FP_LG		((FP_NMANT - 1) & 31)	/* log2(1.0) for fp_mant[0] */
     97 #define	FP_LG2		((FP_NMANT - 1) & 63)	/* log2(1.0) for fp_mant[0] and fp_mant[1] */
     98 #define	FP_QUIETBIT	(1 << (FP_LG - 1))	/* Quiet bit in NaNs (0.5) */
     99 #define	FP_1		(1 << FP_LG)		/* 1.0 in fp_mant[0] */
    100 #define	FP_2		(1 << (FP_LG + 1))	/* 2.0 in fp_mant[0] */
    101 
    102 /*
    103  * Number classes.  Since zero, Inf, and NaN cannot be represented using
    104  * the above layout, we distinguish these from other numbers via a class.
    105  * In addition, to make computation easier and to follow Appendix N of
    106  * the SPARC Version 8 standard, we give each kind of NaN a separate class.
    107  */
    108 #define	FPC_SNAN	-2		/* signalling NaN (sign irrelevant) */
    109 #define	FPC_QNAN	-1		/* quiet NaN (sign irrelevant) */
    110 #define	FPC_ZERO	0		/* zero (sign matters) */
    111 #define	FPC_NUM		1		/* number (sign matters) */
    112 #define	FPC_INF		2		/* infinity (sign matters) */
    113 
    114 #define	ISNAN(fp)	((fp)->fp_class < 0)
    115 #define	ISZERO(fp)	((fp)->fp_class == 0)
    116 #define	ISINF(fp)	((fp)->fp_class == FPC_INF)
    117 
    118 /*
    119  * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
    120  * to the `more significant' operand for our purposes.  Appendix N says that
    121  * the result of a computation involving two numbers are:
    122  *
    123  *	If both are SNaN: operand 2, converted to Quiet
    124  *	If only one is SNaN: the SNaN operand, converted to Quiet
    125  *	If both are QNaN: operand 2
    126  *	If only one is QNaN: the QNaN operand
    127  *
    128  * In addition, in operations with an Inf operand, the result is usually
    129  * Inf.  The class numbers are carefully arranged so that if
    130  *	(unsigned)class(op1) > (unsigned)class(op2)
    131  * then op1 is the one we want; otherwise op2 is the one we want.
    132  */
    133 #define	ORDER(x, y) { \
    134 	if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
    135 		SWAP(x, y); \
    136 }
    137 #define	SWAP(x, y) { \
    138 	register struct fpn *swap; \
    139 	swap = (x), (x) = (y), (y) = swap; \
    140 }
    141 
    142 /*
    143  * Emulator state.
    144  */
    145 struct fpemu {
    146 #ifndef SUN4U
    147 	struct	fpstate *fe_fpstate;	/* registers, etc */
    148 #else /* SUN4U */
    149 	struct	fpstate64 *fe_fpstate;	/* registers, etc */
    150 #endif /* SUN4U */
    151 	int	fe_fsr;			/* fsr copy (modified during op) */
    152 	int	fe_cx;			/* exceptions */
    153 	struct	fpn fe_f1;		/* operand 1 */
    154 	struct	fpn fe_f2;		/* operand 2, if required */
    155 	struct	fpn fe_f3;		/* available storage for result */
    156 };
    157 
    158 /*
    159  * Arithmetic functions.
    160  * Each of these may modify its inputs (f1,f2) and/or the temporary.
    161  * Each returns a pointer to the result and/or sets exceptions.
    162  */
    163 struct	fpn *fpu_add(struct fpemu *);
    164 #define	fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
    165 struct	fpn *fpu_mul(struct fpemu *);
    166 struct	fpn *fpu_div(struct fpemu *);
    167 struct	fpn *fpu_sqrt(struct fpemu *);
    168 
    169 /*
    170  * Other functions.
    171  */
    172 
    173 /* Perform a compare instruction (with or without unordered exception). */
    174 void	fpu_compare(struct fpemu *, int);
    175 
    176 /* Build a new Quiet NaN (sign=0, frac=all 1's). */
    177 struct	fpn *fpu_newnan(struct fpemu *);
    178 
    179 /*
    180  * Shift a number right some number of bits, taking care of round/sticky.
    181  * Note that the result is probably not a well-formed number (it will lack
    182  * the normal 1-bit mant[0]&FP_1).
    183  */
    184 int	fpu_shr(struct fpn *, int);
    185 
    186 void	fpu_explode(struct fpemu *, struct fpn *, int, int);
    187 void	fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
    188 
    189 #ifdef DEBUG
    190 #define	FPE_INSN	0x1
    191 #define	FPE_REG		0x2
    192 extern int fpe_debug;
    193 void	fpu_dumpfpn(struct fpn *);
    194 #define	DPRINTF(x, y)	if (fpe_debug & (x)) printf y
    195 #define DUMPFPN(x, f)	if (fpe_debug & (x)) fpu_dumpfpn((f))
    196 #else
    197 #define	DPRINTF(x, y)
    198 #define DUMPFPN(x, f)
    199 #endif
    200