Home | History | Annotate | Line # | Download | only in fpu
fpu_explode.c revision 1.1
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * All advertising materials mentioning features or use of this software
     10  * must display the following acknowledgement:
     11  *	This product includes software developed by the University of
     12  *	California, Lawrence Berkeley Laboratory.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *	This product includes software developed by the University of
     25  *	California, Berkeley and its contributors.
     26  * 4. Neither the name of the University nor the names of its contributors
     27  *    may be used to endorse or promote products derived from this software
     28  *    without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  * SUCH DAMAGE.
     41  *
     42  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     43  *
     44  * from: Header: fpu_explode.c,v 1.3 92/11/26 01:39:48 torek Exp
     45  * $Id: fpu_explode.c,v 1.1 1993/10/02 10:22:57 deraadt Exp $
     46  */
     47 
     48 /*
     49  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     50  * into our internal format.
     51  */
     52 
     53 #include <sys/types.h>
     54 
     55 #include <machine/ieee.h>
     56 #include <machine/instr.h>
     57 #include <machine/reg.h>
     58 
     59 #include <sparc/fpu/fpu_arith.h>
     60 #include <sparc/fpu/fpu_emu.h>
     61 
     62 /*
     63  * N.B.: in all of the following, we assume the FP format is
     64  *
     65  *	---------------------------
     66  *	| s | exponent | fraction |
     67  *	---------------------------
     68  *
     69  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     70  * sign bit is way at the top (bit 31), the exponent is next, and
     71  * then the remaining bits mark the fraction.  A zero exponent means
     72  * zero or denormalized (0.fraction rather than 1.fraction), and the
     73  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     74  *
     75  * Since the sign bit is always the topmost bit---this holds even for
     76  * integers---we set that outside all the *tof functions.  Each function
     77  * returns the class code for the new number (but note that we use
     78  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     79  */
     80 
     81 /*
     82  * int -> fpn.
     83  */
     84 int
     85 fpu_itof(fp, i)
     86 	register struct fpn *fp;
     87 	register u_int i;
     88 {
     89 
     90 	if (i == 0)
     91 		return (FPC_ZERO);
     92 	/*
     93 	 * The value FP_1 represents 2^FP_LG, so set the exponent
     94 	 * there and let normalization fix it up.  Convert negative
     95 	 * numbers to sign-and-magnitude.  Note that this relies on
     96 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
     97 	 */
     98 	fp->fp_exp = FP_LG;
     99 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
    100 	fp->fp_mant[1] = 0;
    101 	fp->fp_mant[2] = 0;
    102 	fp->fp_mant[3] = 0;
    103 	fpu_norm(fp);
    104 	return (FPC_NUM);
    105 }
    106 
    107 #define	mask(nbits) ((1 << (nbits)) - 1)
    108 
    109 /*
    110  * All external floating formats convert to internal in the same manner,
    111  * as defined here.  Note that only normals get an implied 1.0 inserted.
    112  */
    113 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    114 	if (exp == 0) { \
    115 		if (allfrac == 0) \
    116 			return (FPC_ZERO); \
    117 		fp->fp_exp = 1 - expbias; \
    118 		fp->fp_mant[0] = f0; \
    119 		fp->fp_mant[1] = f1; \
    120 		fp->fp_mant[2] = f2; \
    121 		fp->fp_mant[3] = f3; \
    122 		fpu_norm(fp); \
    123 		return (FPC_NUM); \
    124 	} \
    125 	if (exp == (2 * expbias + 1)) { \
    126 		if (allfrac == 0) \
    127 			return (FPC_INF); \
    128 		fp->fp_mant[0] = f0; \
    129 		fp->fp_mant[1] = f1; \
    130 		fp->fp_mant[2] = f2; \
    131 		fp->fp_mant[3] = f3; \
    132 		return (FPC_QNAN); \
    133 	} \
    134 	fp->fp_exp = exp - expbias; \
    135 	fp->fp_mant[0] = FP_1 | f0; \
    136 	fp->fp_mant[1] = f1; \
    137 	fp->fp_mant[2] = f2; \
    138 	fp->fp_mant[3] = f3; \
    139 	return (FPC_NUM)
    140 
    141 /*
    142  * 32-bit single precision -> fpn.
    143  * We assume a single occupies at most (64-FP_LG) bits in the internal
    144  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    145  */
    146 int
    147 fpu_stof(fp, i)
    148 	register struct fpn *fp;
    149 	register u_int i;
    150 {
    151 	register int exp;
    152 	register u_int frac, f0, f1;
    153 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    154 
    155 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    156 	frac = i & mask(SNG_FRACBITS);
    157 	f0 = frac >> SNG_SHIFT;
    158 	f1 = frac << (32 - SNG_SHIFT);
    159 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    160 }
    161 
    162 /*
    163  * 64-bit double -> fpn.
    164  * We assume this uses at most (96-FP_LG) bits.
    165  */
    166 int
    167 fpu_dtof(fp, i, j)
    168 	register struct fpn *fp;
    169 	register u_int i, j;
    170 {
    171 	register int exp;
    172 	register u_int frac, f0, f1, f2;
    173 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    174 
    175 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    176 	frac = i & mask(DBL_FRACBITS - 32);
    177 	f0 = frac >> DBL_SHIFT;
    178 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    179 	f2 = j << (32 - DBL_SHIFT);
    180 	frac |= j;
    181 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    182 }
    183 
    184 /*
    185  * 128-bit extended -> fpn.
    186  */
    187 int
    188 fpu_xtof(fp, i, j, k, l)
    189 	register struct fpn *fp;
    190 	register u_int i, j, k, l;
    191 {
    192 	register int exp;
    193 	register u_int frac, f0, f1, f2, f3;
    194 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
    195 
    196 	/*
    197 	 * Note that ext and fpn `line up', hence no shifting needed.
    198 	 */
    199 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
    200 	frac = i & mask(EXT_FRACBITS - 3 * 32);
    201 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
    202 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
    203 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
    204 	f3 = l << EXT_SHIFT;
    205 	frac |= j | k | l;
    206 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
    207 }
    208 
    209 /*
    210  * Explode the contents of a register / regpair / regquad.
    211  * If the input is a signalling NaN, an NV (invalid) exception
    212  * will be set.  (Note that nothing but NV can occur until ALU
    213  * operations are performed.)
    214  */
    215 void
    216 fpu_explode(fe, fp, type, reg)
    217 	register struct fpemu *fe;
    218 	register struct fpn *fp;
    219 	int type, reg;
    220 {
    221 	register u_int s, *space;
    222 
    223 	space = &fe->fe_fpstate->fs_regs[reg];
    224 	s = space[0];
    225 	fp->fp_sign = s >> 31;
    226 	fp->fp_sticky = 0;
    227 	switch (type) {
    228 
    229 	case FTYPE_INT:
    230 		s = fpu_itof(fp, s);
    231 		break;
    232 
    233 	case FTYPE_SNG:
    234 		s = fpu_stof(fp, s);
    235 		break;
    236 
    237 	case FTYPE_DBL:
    238 		s = fpu_dtof(fp, s, space[1]);
    239 		break;
    240 
    241 	case FTYPE_EXT:
    242 		s = fpu_xtof(fp, s, space[1], space[2], space[3]);
    243 		break;
    244 
    245 	default:
    246 		panic("fpu_explode");
    247 	}
    248 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    249 		/*
    250 		 * Input is a signalling NaN.  All operations that return
    251 		 * an input NaN operand put it through a ``NaN conversion'',
    252 		 * which basically just means ``turn on the quiet bit''.
    253 		 * We do this here so that all NaNs internally look quiet
    254 		 * (we can tell signalling ones by their class).
    255 		 */
    256 		fp->fp_mant[0] |= FP_QUIETBIT;
    257 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
    258 		s = FPC_SNAN;
    259 	}
    260 	fp->fp_class = s;
    261 }
    262