Home | History | Annotate | Line # | Download | only in fpu
fpu_explode.c revision 1.10
      1 /*	$NetBSD: fpu_explode.c,v 1.10 2003/07/15 00:04:59 lukem Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     49  * into our internal format.
     50  */
     51 
     52 #include <sys/cdefs.h>
     53 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.10 2003/07/15 00:04:59 lukem Exp $");
     54 
     55 #if defined(_KERNEL_OPT)
     56 #include "opt_sparc_arch.h"
     57 #endif
     58 
     59 #include <sys/types.h>
     60 #include <sys/systm.h>
     61 
     62 #include <machine/ieee.h>
     63 #include <machine/instr.h>
     64 #include <machine/reg.h>
     65 
     66 #include <sparc/fpu/fpu_arith.h>
     67 #include <sparc/fpu/fpu_emu.h>
     68 #include <sparc/fpu/fpu_extern.h>
     69 
     70 /*
     71  * N.B.: in all of the following, we assume the FP format is
     72  *
     73  *	---------------------------
     74  *	| s | exponent | fraction |
     75  *	---------------------------
     76  *
     77  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     78  * sign bit is way at the top (bit 31), the exponent is next, and
     79  * then the remaining bits mark the fraction.  A zero exponent means
     80  * zero or denormalized (0.fraction rather than 1.fraction), and the
     81  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     82  *
     83  * Since the sign bit is always the topmost bit---this holds even for
     84  * integers---we set that outside all the *tof functions.  Each function
     85  * returns the class code for the new number (but note that we use
     86  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     87  */
     88 
     89 /*
     90  * int -> fpn.
     91  */
     92 int
     93 fpu_itof(fp, i)
     94 	register struct fpn *fp;
     95 	register u_int i;
     96 {
     97 
     98 	if (i == 0)
     99 		return (FPC_ZERO);
    100 	/*
    101 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    102 	 * there and let normalization fix it up.  Convert negative
    103 	 * numbers to sign-and-magnitude.  Note that this relies on
    104 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    105 	 */
    106 	fp->fp_exp = FP_LG;
    107 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
    108 	fp->fp_mant[1] = 0;
    109 	fp->fp_mant[2] = 0;
    110 	fp->fp_mant[3] = 0;
    111 	fpu_norm(fp);
    112 	return (FPC_NUM);
    113 }
    114 
    115 #ifdef SUN4U
    116 /*
    117  * 64-bit int -> fpn.
    118  */
    119 int
    120 fpu_xtof(fp, i)
    121 	register struct fpn *fp;
    122 	register u_int64_t i;
    123 {
    124 
    125 	if (i == 0)
    126 		return (FPC_ZERO);
    127 	/*
    128 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    129 	 * there and let normalization fix it up.  Convert negative
    130 	 * numbers to sign-and-magnitude.  Note that this relies on
    131 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    132 	 */
    133 	fp->fp_exp = FP_LG2;
    134 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
    135 	fp->fp_mant[2] = 0;
    136 	fp->fp_mant[3] = 0;
    137 	fpu_norm(fp);
    138 	return (FPC_NUM);
    139 }
    140 #endif /* SUN4U */
    141 
    142 #define	mask(nbits) ((1L << (nbits)) - 1)
    143 
    144 /*
    145  * All external floating formats convert to internal in the same manner,
    146  * as defined here.  Note that only normals get an implied 1.0 inserted.
    147  */
    148 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    149 	if (exp == 0) { \
    150 		if (allfrac == 0) \
    151 			return (FPC_ZERO); \
    152 		fp->fp_exp = 1 - expbias; \
    153 		fp->fp_mant[0] = f0; \
    154 		fp->fp_mant[1] = f1; \
    155 		fp->fp_mant[2] = f2; \
    156 		fp->fp_mant[3] = f3; \
    157 		fpu_norm(fp); \
    158 		return (FPC_NUM); \
    159 	} \
    160 	if (exp == (2 * expbias + 1)) { \
    161 		if (allfrac == 0) \
    162 			return (FPC_INF); \
    163 		fp->fp_mant[0] = f0; \
    164 		fp->fp_mant[1] = f1; \
    165 		fp->fp_mant[2] = f2; \
    166 		fp->fp_mant[3] = f3; \
    167 		return (FPC_QNAN); \
    168 	} \
    169 	fp->fp_exp = exp - expbias; \
    170 	fp->fp_mant[0] = FP_1 | f0; \
    171 	fp->fp_mant[1] = f1; \
    172 	fp->fp_mant[2] = f2; \
    173 	fp->fp_mant[3] = f3; \
    174 	return (FPC_NUM)
    175 
    176 /*
    177  * 32-bit single precision -> fpn.
    178  * We assume a single occupies at most (64-FP_LG) bits in the internal
    179  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    180  */
    181 int
    182 fpu_stof(fp, i)
    183 	register struct fpn *fp;
    184 	register u_int i;
    185 {
    186 	register int exp;
    187 	register u_int frac, f0, f1;
    188 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    189 
    190 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    191 	frac = i & mask(SNG_FRACBITS);
    192 	f0 = frac >> SNG_SHIFT;
    193 	f1 = frac << (32 - SNG_SHIFT);
    194 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    195 }
    196 
    197 /*
    198  * 64-bit double -> fpn.
    199  * We assume this uses at most (96-FP_LG) bits.
    200  */
    201 int
    202 fpu_dtof(fp, i, j)
    203 	register struct fpn *fp;
    204 	register u_int i, j;
    205 {
    206 	register int exp;
    207 	register u_int frac, f0, f1, f2;
    208 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    209 
    210 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    211 	frac = i & mask(DBL_FRACBITS - 32);
    212 	f0 = frac >> DBL_SHIFT;
    213 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    214 	f2 = j << (32 - DBL_SHIFT);
    215 	frac |= j;
    216 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    217 }
    218 
    219 /*
    220  * 128-bit extended -> fpn.
    221  */
    222 int
    223 fpu_qtof(fp, i, j, k, l)
    224 	register struct fpn *fp;
    225 	register u_int i, j, k, l;
    226 {
    227 	register int exp;
    228 	register u_int frac, f0, f1, f2, f3;
    229 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
    230 
    231 	/*
    232 	 * Note that ext and fpn `line up', hence no shifting needed.
    233 	 */
    234 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
    235 	frac = i & mask(EXT_FRACBITS - 3 * 32);
    236 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
    237 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
    238 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
    239 	f3 = l << EXT_SHIFT;
    240 	frac |= j | k | l;
    241 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
    242 }
    243 
    244 /*
    245  * Explode the contents of a register / regpair / regquad.
    246  * If the input is a signalling NaN, an NV (invalid) exception
    247  * will be set.  (Note that nothing but NV can occur until ALU
    248  * operations are performed.)
    249  */
    250 void
    251 fpu_explode(fe, fp, type, reg)
    252 	register struct fpemu *fe;
    253 	register struct fpn *fp;
    254 	int type, reg;
    255 {
    256 	register u_int s, *space;
    257 #ifdef SUN4U
    258 	u_int64_t l, *xspace;
    259 
    260 	xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
    261 	l = xspace[0];
    262 #endif /* SUN4U */
    263 	space = &fe->fe_fpstate->fs_regs[reg];
    264 	s = space[0];
    265 	fp->fp_sign = s >> 31;
    266 	fp->fp_sticky = 0;
    267 	switch (type) {
    268 #ifdef SUN4U
    269 	case FTYPE_LNG:
    270 		s = fpu_xtof(fp, l);
    271 		break;
    272 #endif /* SUN4U */
    273 
    274 	case FTYPE_INT:
    275 		s = fpu_itof(fp, s);
    276 		break;
    277 
    278 	case FTYPE_SNG:
    279 		s = fpu_stof(fp, s);
    280 		break;
    281 
    282 	case FTYPE_DBL:
    283 		s = fpu_dtof(fp, s, space[1]);
    284 		break;
    285 
    286 	case FTYPE_EXT:
    287 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
    288 		break;
    289 
    290 	default:
    291 		panic("fpu_explode");
    292 	}
    293 
    294 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    295 		/*
    296 		 * Input is a signalling NaN.  All operations that return
    297 		 * an input NaN operand put it through a ``NaN conversion'',
    298 		 * which basically just means ``turn on the quiet bit''.
    299 		 * We do this here so that all NaNs internally look quiet
    300 		 * (we can tell signalling ones by their class).
    301 		 */
    302 		fp->fp_mant[0] |= FP_QUIETBIT;
    303 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
    304 		s = FPC_SNAN;
    305 	}
    306 	fp->fp_class = s;
    307 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
    308 		((type == FTYPE_INT) ? 'i' :
    309 			((type == FTYPE_SNG) ? 's' :
    310 				((type == FTYPE_DBL) ? 'd' :
    311 					((type == FTYPE_EXT) ? 'q' : '?')))),
    312 		reg));
    313 #ifdef DEBUG
    314 	if (fpe_debug & FPE_REG) {
    315 		if (type == FTYPE_INT) printf("%d ", s);
    316 #ifdef SUN4U
    317 #ifdef _LP64
    318 		if (type == FTYPE_LNG) printf("%ld ", l);
    319 #else
    320 		if (type == FTYPE_LNG) printf("%lld ", l);
    321 #endif
    322 #endif /* SUN4U */
    323 	}
    324 #endif /* DEBUG */
    325 	DUMPFPN(FPE_REG, fp);
    326 	DPRINTF(FPE_REG, ("\n"));
    327 }
    328