Home | History | Annotate | Line # | Download | only in fpu
fpu_explode.c revision 1.11
      1 /*	$NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     45  * into our internal format.
     46  */
     47 
     48 #include <sys/cdefs.h>
     49 __KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.11 2003/08/07 16:29:37 agc Exp $");
     50 
     51 #if defined(_KERNEL_OPT)
     52 #include "opt_sparc_arch.h"
     53 #endif
     54 
     55 #include <sys/types.h>
     56 #include <sys/systm.h>
     57 
     58 #include <machine/ieee.h>
     59 #include <machine/instr.h>
     60 #include <machine/reg.h>
     61 
     62 #include <sparc/fpu/fpu_arith.h>
     63 #include <sparc/fpu/fpu_emu.h>
     64 #include <sparc/fpu/fpu_extern.h>
     65 
     66 /*
     67  * N.B.: in all of the following, we assume the FP format is
     68  *
     69  *	---------------------------
     70  *	| s | exponent | fraction |
     71  *	---------------------------
     72  *
     73  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     74  * sign bit is way at the top (bit 31), the exponent is next, and
     75  * then the remaining bits mark the fraction.  A zero exponent means
     76  * zero or denormalized (0.fraction rather than 1.fraction), and the
     77  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     78  *
     79  * Since the sign bit is always the topmost bit---this holds even for
     80  * integers---we set that outside all the *tof functions.  Each function
     81  * returns the class code for the new number (but note that we use
     82  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     83  */
     84 
     85 /*
     86  * int -> fpn.
     87  */
     88 int
     89 fpu_itof(fp, i)
     90 	register struct fpn *fp;
     91 	register u_int i;
     92 {
     93 
     94 	if (i == 0)
     95 		return (FPC_ZERO);
     96 	/*
     97 	 * The value FP_1 represents 2^FP_LG, so set the exponent
     98 	 * there and let normalization fix it up.  Convert negative
     99 	 * numbers to sign-and-magnitude.  Note that this relies on
    100 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    101 	 */
    102 	fp->fp_exp = FP_LG;
    103 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
    104 	fp->fp_mant[1] = 0;
    105 	fp->fp_mant[2] = 0;
    106 	fp->fp_mant[3] = 0;
    107 	fpu_norm(fp);
    108 	return (FPC_NUM);
    109 }
    110 
    111 #ifdef SUN4U
    112 /*
    113  * 64-bit int -> fpn.
    114  */
    115 int
    116 fpu_xtof(fp, i)
    117 	register struct fpn *fp;
    118 	register u_int64_t i;
    119 {
    120 
    121 	if (i == 0)
    122 		return (FPC_ZERO);
    123 	/*
    124 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    125 	 * there and let normalization fix it up.  Convert negative
    126 	 * numbers to sign-and-magnitude.  Note that this relies on
    127 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    128 	 */
    129 	fp->fp_exp = FP_LG2;
    130 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
    131 	fp->fp_mant[2] = 0;
    132 	fp->fp_mant[3] = 0;
    133 	fpu_norm(fp);
    134 	return (FPC_NUM);
    135 }
    136 #endif /* SUN4U */
    137 
    138 #define	mask(nbits) ((1L << (nbits)) - 1)
    139 
    140 /*
    141  * All external floating formats convert to internal in the same manner,
    142  * as defined here.  Note that only normals get an implied 1.0 inserted.
    143  */
    144 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    145 	if (exp == 0) { \
    146 		if (allfrac == 0) \
    147 			return (FPC_ZERO); \
    148 		fp->fp_exp = 1 - expbias; \
    149 		fp->fp_mant[0] = f0; \
    150 		fp->fp_mant[1] = f1; \
    151 		fp->fp_mant[2] = f2; \
    152 		fp->fp_mant[3] = f3; \
    153 		fpu_norm(fp); \
    154 		return (FPC_NUM); \
    155 	} \
    156 	if (exp == (2 * expbias + 1)) { \
    157 		if (allfrac == 0) \
    158 			return (FPC_INF); \
    159 		fp->fp_mant[0] = f0; \
    160 		fp->fp_mant[1] = f1; \
    161 		fp->fp_mant[2] = f2; \
    162 		fp->fp_mant[3] = f3; \
    163 		return (FPC_QNAN); \
    164 	} \
    165 	fp->fp_exp = exp - expbias; \
    166 	fp->fp_mant[0] = FP_1 | f0; \
    167 	fp->fp_mant[1] = f1; \
    168 	fp->fp_mant[2] = f2; \
    169 	fp->fp_mant[3] = f3; \
    170 	return (FPC_NUM)
    171 
    172 /*
    173  * 32-bit single precision -> fpn.
    174  * We assume a single occupies at most (64-FP_LG) bits in the internal
    175  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    176  */
    177 int
    178 fpu_stof(fp, i)
    179 	register struct fpn *fp;
    180 	register u_int i;
    181 {
    182 	register int exp;
    183 	register u_int frac, f0, f1;
    184 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    185 
    186 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    187 	frac = i & mask(SNG_FRACBITS);
    188 	f0 = frac >> SNG_SHIFT;
    189 	f1 = frac << (32 - SNG_SHIFT);
    190 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    191 }
    192 
    193 /*
    194  * 64-bit double -> fpn.
    195  * We assume this uses at most (96-FP_LG) bits.
    196  */
    197 int
    198 fpu_dtof(fp, i, j)
    199 	register struct fpn *fp;
    200 	register u_int i, j;
    201 {
    202 	register int exp;
    203 	register u_int frac, f0, f1, f2;
    204 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    205 
    206 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    207 	frac = i & mask(DBL_FRACBITS - 32);
    208 	f0 = frac >> DBL_SHIFT;
    209 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    210 	f2 = j << (32 - DBL_SHIFT);
    211 	frac |= j;
    212 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    213 }
    214 
    215 /*
    216  * 128-bit extended -> fpn.
    217  */
    218 int
    219 fpu_qtof(fp, i, j, k, l)
    220 	register struct fpn *fp;
    221 	register u_int i, j, k, l;
    222 {
    223 	register int exp;
    224 	register u_int frac, f0, f1, f2, f3;
    225 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
    226 
    227 	/*
    228 	 * Note that ext and fpn `line up', hence no shifting needed.
    229 	 */
    230 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
    231 	frac = i & mask(EXT_FRACBITS - 3 * 32);
    232 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
    233 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
    234 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
    235 	f3 = l << EXT_SHIFT;
    236 	frac |= j | k | l;
    237 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
    238 }
    239 
    240 /*
    241  * Explode the contents of a register / regpair / regquad.
    242  * If the input is a signalling NaN, an NV (invalid) exception
    243  * will be set.  (Note that nothing but NV can occur until ALU
    244  * operations are performed.)
    245  */
    246 void
    247 fpu_explode(fe, fp, type, reg)
    248 	register struct fpemu *fe;
    249 	register struct fpn *fp;
    250 	int type, reg;
    251 {
    252 	register u_int s, *space;
    253 #ifdef SUN4U
    254 	u_int64_t l, *xspace;
    255 
    256 	xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
    257 	l = xspace[0];
    258 #endif /* SUN4U */
    259 	space = &fe->fe_fpstate->fs_regs[reg];
    260 	s = space[0];
    261 	fp->fp_sign = s >> 31;
    262 	fp->fp_sticky = 0;
    263 	switch (type) {
    264 #ifdef SUN4U
    265 	case FTYPE_LNG:
    266 		s = fpu_xtof(fp, l);
    267 		break;
    268 #endif /* SUN4U */
    269 
    270 	case FTYPE_INT:
    271 		s = fpu_itof(fp, s);
    272 		break;
    273 
    274 	case FTYPE_SNG:
    275 		s = fpu_stof(fp, s);
    276 		break;
    277 
    278 	case FTYPE_DBL:
    279 		s = fpu_dtof(fp, s, space[1]);
    280 		break;
    281 
    282 	case FTYPE_EXT:
    283 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
    284 		break;
    285 
    286 	default:
    287 		panic("fpu_explode");
    288 	}
    289 
    290 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    291 		/*
    292 		 * Input is a signalling NaN.  All operations that return
    293 		 * an input NaN operand put it through a ``NaN conversion'',
    294 		 * which basically just means ``turn on the quiet bit''.
    295 		 * We do this here so that all NaNs internally look quiet
    296 		 * (we can tell signalling ones by their class).
    297 		 */
    298 		fp->fp_mant[0] |= FP_QUIETBIT;
    299 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
    300 		s = FPC_SNAN;
    301 	}
    302 	fp->fp_class = s;
    303 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
    304 		((type == FTYPE_INT) ? 'i' :
    305 			((type == FTYPE_SNG) ? 's' :
    306 				((type == FTYPE_DBL) ? 'd' :
    307 					((type == FTYPE_EXT) ? 'q' : '?')))),
    308 		reg));
    309 #ifdef DEBUG
    310 	if (fpe_debug & FPE_REG) {
    311 		if (type == FTYPE_INT) printf("%d ", s);
    312 #ifdef SUN4U
    313 #ifdef _LP64
    314 		if (type == FTYPE_LNG) printf("%ld ", l);
    315 #else
    316 		if (type == FTYPE_LNG) printf("%lld ", l);
    317 #endif
    318 #endif /* SUN4U */
    319 	}
    320 #endif /* DEBUG */
    321 	DUMPFPN(FPE_REG, fp);
    322 	DPRINTF(FPE_REG, ("\n"));
    323 }
    324