fpu_explode.c revision 1.5 1 /* $NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `explode' the machine's `packed binary' format numbers
49 * into our internal format.
50 */
51
52 #include <sys/types.h>
53 #include <sys/systm.h>
54
55 #include <machine/ieee.h>
56 #include <machine/instr.h>
57 #include <machine/reg.h>
58
59 #include <sparc/fpu/fpu_arith.h>
60 #include <sparc/fpu/fpu_emu.h>
61 #include <sparc/fpu/fpu_extern.h>
62
63 /*
64 * N.B.: in all of the following, we assume the FP format is
65 *
66 * ---------------------------
67 * | s | exponent | fraction |
68 * ---------------------------
69 *
70 * (which represents -1**s * 1.fraction * 2**exponent), so that the
71 * sign bit is way at the top (bit 31), the exponent is next, and
72 * then the remaining bits mark the fraction. A zero exponent means
73 * zero or denormalized (0.fraction rather than 1.fraction), and the
74 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
75 *
76 * Since the sign bit is always the topmost bit---this holds even for
77 * integers---we set that outside all the *tof functions. Each function
78 * returns the class code for the new number (but note that we use
79 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
80 */
81
82 /*
83 * int -> fpn.
84 */
85 int
86 fpu_itof(fp, i)
87 register struct fpn *fp;
88 register u_int i;
89 {
90
91 if (i == 0)
92 return (FPC_ZERO);
93 /*
94 * The value FP_1 represents 2^FP_LG, so set the exponent
95 * there and let normalization fix it up. Convert negative
96 * numbers to sign-and-magnitude. Note that this relies on
97 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
98 */
99 fp->fp_exp = FP_LG;
100 fp->fp_mant[0] = (int)i < 0 ? -i : i;
101 fp->fp_mant[1] = 0;
102 fp->fp_mant[2] = 0;
103 fp->fp_mant[3] = 0;
104 fpu_norm(fp);
105 return (FPC_NUM);
106 }
107
108 #ifdef SUN4U
109 /*
110 * 64-bit int -> fpn.
111 */
112 int
113 fpu_xtof(fp, i)
114 register struct fpn *fp;
115 register u_int64_t i;
116 {
117
118 if (i == 0)
119 return (FPC_ZERO);
120 /*
121 * The value FP_1 represents 2^FP_LG, so set the exponent
122 * there and let normalization fix it up. Convert negative
123 * numbers to sign-and-magnitude. Note that this relies on
124 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
125 */
126 fp->fp_exp = FP_LG2;
127 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
128 fp->fp_mant[2] = 0;
129 fp->fp_mant[3] = 0;
130 fpu_norm(fp);
131 return (FPC_NUM);
132 }
133 #endif /* SUN4U */
134
135 #define mask(nbits) ((1L << (nbits)) - 1)
136
137 /*
138 * All external floating formats convert to internal in the same manner,
139 * as defined here. Note that only normals get an implied 1.0 inserted.
140 */
141 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
142 if (exp == 0) { \
143 if (allfrac == 0) \
144 return (FPC_ZERO); \
145 fp->fp_exp = 1 - expbias; \
146 fp->fp_mant[0] = f0; \
147 fp->fp_mant[1] = f1; \
148 fp->fp_mant[2] = f2; \
149 fp->fp_mant[3] = f3; \
150 fpu_norm(fp); \
151 return (FPC_NUM); \
152 } \
153 if (exp == (2 * expbias + 1)) { \
154 if (allfrac == 0) \
155 return (FPC_INF); \
156 fp->fp_mant[0] = f0; \
157 fp->fp_mant[1] = f1; \
158 fp->fp_mant[2] = f2; \
159 fp->fp_mant[3] = f3; \
160 return (FPC_QNAN); \
161 } \
162 fp->fp_exp = exp - expbias; \
163 fp->fp_mant[0] = FP_1 | f0; \
164 fp->fp_mant[1] = f1; \
165 fp->fp_mant[2] = f2; \
166 fp->fp_mant[3] = f3; \
167 return (FPC_NUM)
168
169 /*
170 * 32-bit single precision -> fpn.
171 * We assume a single occupies at most (64-FP_LG) bits in the internal
172 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
173 */
174 int
175 fpu_stof(fp, i)
176 register struct fpn *fp;
177 register u_int i;
178 {
179 register int exp;
180 register u_int frac, f0, f1;
181 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
182
183 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
184 frac = i & mask(SNG_FRACBITS);
185 f0 = frac >> SNG_SHIFT;
186 f1 = frac << (32 - SNG_SHIFT);
187 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
188 }
189
190 /*
191 * 64-bit double -> fpn.
192 * We assume this uses at most (96-FP_LG) bits.
193 */
194 int
195 fpu_dtof(fp, i, j)
196 register struct fpn *fp;
197 register u_int i, j;
198 {
199 register int exp;
200 register u_int frac, f0, f1, f2;
201 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
202
203 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
204 frac = i & mask(DBL_FRACBITS - 32);
205 f0 = frac >> DBL_SHIFT;
206 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
207 f2 = j << (32 - DBL_SHIFT);
208 frac |= j;
209 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
210 }
211
212 /*
213 * 128-bit extended -> fpn.
214 */
215 int
216 fpu_qtof(fp, i, j, k, l)
217 register struct fpn *fp;
218 register u_int i, j, k, l;
219 {
220 register int exp;
221 register u_int frac, f0, f1, f2, f3;
222 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
223
224 /*
225 * Note that ext and fpn `line up', hence no shifting needed.
226 */
227 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
228 frac = i & mask(EXT_FRACBITS - 3 * 32);
229 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
230 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
231 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
232 f3 = l << EXT_SHIFT;
233 frac |= j | k | l;
234 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
235 }
236
237 /*
238 * Explode the contents of a register / regpair / regquad.
239 * If the input is a signalling NaN, an NV (invalid) exception
240 * will be set. (Note that nothing but NV can occur until ALU
241 * operations are performed.)
242 */
243 void
244 fpu_explode(fe, fp, type, reg)
245 register struct fpemu *fe;
246 register struct fpn *fp;
247 int type, reg;
248 {
249 register u_int s, *space;
250 #ifdef SUN4U
251 u_int64_t l, *xspace;
252
253 xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
254 l = xspace[0];
255 #endif /* SUN4U */
256 space = &fe->fe_fpstate->fs_regs[reg];
257 s = space[0];
258 fp->fp_sign = s >> 31;
259 fp->fp_sticky = 0;
260 switch (type) {
261 #ifdef SUN4U
262 case FTYPE_LNG:
263 s = fpu_xtof(fp, l);
264 break;
265 #endif /* SUN4U */
266
267 case FTYPE_INT:
268 s = fpu_itof(fp, s);
269 break;
270
271 case FTYPE_SNG:
272 s = fpu_stof(fp, s);
273 break;
274
275 case FTYPE_DBL:
276 s = fpu_dtof(fp, s, space[1]);
277 break;
278
279 case FTYPE_EXT:
280 s = fpu_qtof(fp, s, space[1], space[2], space[3]);
281 break;
282
283 default:
284 panic("fpu_explode");
285 }
286
287 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
288 /*
289 * Input is a signalling NaN. All operations that return
290 * an input NaN operand put it through a ``NaN conversion'',
291 * which basically just means ``turn on the quiet bit''.
292 * We do this here so that all NaNs internally look quiet
293 * (we can tell signalling ones by their class).
294 */
295 fp->fp_mant[0] |= FP_QUIETBIT;
296 fe->fe_cx = FSR_NV; /* assert invalid operand */
297 s = FPC_SNAN;
298 }
299 fp->fp_class = s;
300 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
301 ((type == FTYPE_INT) ? 'i' :
302 ((type == FTYPE_SNG) ? 's' :
303 ((type == FTYPE_DBL) ? 'd' :
304 ((type == FTYPE_EXT) ? 'q' : '?')))),
305 reg));
306 DUMPFPN(FPE_REG, fp);
307 DPRINTF(FPE_REG, ("\n"));
308 }
309