fpu_explode.c revision 1.6 1 /* $NetBSD: fpu_explode.c,v 1.6 2001/12/04 00:05:04 darrenr Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * FPU subroutines: `explode' the machine's `packed binary' format numbers
49 * into our internal format.
50 */
51
52 #if defined(_KERNEL_OPT)
53 #include "opt_sparc_arch.h"
54 #endif
55
56 #include <sys/types.h>
57 #include <sys/systm.h>
58
59 #include <machine/ieee.h>
60 #include <machine/instr.h>
61 #include <machine/reg.h>
62
63 #include <sparc/fpu/fpu_arith.h>
64 #include <sparc/fpu/fpu_emu.h>
65 #include <sparc/fpu/fpu_extern.h>
66
67 /*
68 * N.B.: in all of the following, we assume the FP format is
69 *
70 * ---------------------------
71 * | s | exponent | fraction |
72 * ---------------------------
73 *
74 * (which represents -1**s * 1.fraction * 2**exponent), so that the
75 * sign bit is way at the top (bit 31), the exponent is next, and
76 * then the remaining bits mark the fraction. A zero exponent means
77 * zero or denormalized (0.fraction rather than 1.fraction), and the
78 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
79 *
80 * Since the sign bit is always the topmost bit---this holds even for
81 * integers---we set that outside all the *tof functions. Each function
82 * returns the class code for the new number (but note that we use
83 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
84 */
85
86 /*
87 * int -> fpn.
88 */
89 int
90 fpu_itof(fp, i)
91 register struct fpn *fp;
92 register u_int i;
93 {
94
95 if (i == 0)
96 return (FPC_ZERO);
97 /*
98 * The value FP_1 represents 2^FP_LG, so set the exponent
99 * there and let normalization fix it up. Convert negative
100 * numbers to sign-and-magnitude. Note that this relies on
101 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
102 */
103 fp->fp_exp = FP_LG;
104 fp->fp_mant[0] = (int)i < 0 ? -i : i;
105 fp->fp_mant[1] = 0;
106 fp->fp_mant[2] = 0;
107 fp->fp_mant[3] = 0;
108 fpu_norm(fp);
109 return (FPC_NUM);
110 }
111
112 #ifdef SUN4U
113 /*
114 * 64-bit int -> fpn.
115 */
116 int
117 fpu_xtof(fp, i)
118 register struct fpn *fp;
119 register u_int64_t i;
120 {
121
122 if (i == 0)
123 return (FPC_ZERO);
124 /*
125 * The value FP_1 represents 2^FP_LG, so set the exponent
126 * there and let normalization fix it up. Convert negative
127 * numbers to sign-and-magnitude. Note that this relies on
128 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
129 */
130 fp->fp_exp = FP_LG2;
131 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
132 fp->fp_mant[2] = 0;
133 fp->fp_mant[3] = 0;
134 fpu_norm(fp);
135 return (FPC_NUM);
136 }
137 #endif /* SUN4U */
138
139 #define mask(nbits) ((1L << (nbits)) - 1)
140
141 /*
142 * All external floating formats convert to internal in the same manner,
143 * as defined here. Note that only normals get an implied 1.0 inserted.
144 */
145 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
146 if (exp == 0) { \
147 if (allfrac == 0) \
148 return (FPC_ZERO); \
149 fp->fp_exp = 1 - expbias; \
150 fp->fp_mant[0] = f0; \
151 fp->fp_mant[1] = f1; \
152 fp->fp_mant[2] = f2; \
153 fp->fp_mant[3] = f3; \
154 fpu_norm(fp); \
155 return (FPC_NUM); \
156 } \
157 if (exp == (2 * expbias + 1)) { \
158 if (allfrac == 0) \
159 return (FPC_INF); \
160 fp->fp_mant[0] = f0; \
161 fp->fp_mant[1] = f1; \
162 fp->fp_mant[2] = f2; \
163 fp->fp_mant[3] = f3; \
164 return (FPC_QNAN); \
165 } \
166 fp->fp_exp = exp - expbias; \
167 fp->fp_mant[0] = FP_1 | f0; \
168 fp->fp_mant[1] = f1; \
169 fp->fp_mant[2] = f2; \
170 fp->fp_mant[3] = f3; \
171 return (FPC_NUM)
172
173 /*
174 * 32-bit single precision -> fpn.
175 * We assume a single occupies at most (64-FP_LG) bits in the internal
176 * format: i.e., needs at most fp_mant[0] and fp_mant[1].
177 */
178 int
179 fpu_stof(fp, i)
180 register struct fpn *fp;
181 register u_int i;
182 {
183 register int exp;
184 register u_int frac, f0, f1;
185 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
186
187 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
188 frac = i & mask(SNG_FRACBITS);
189 f0 = frac >> SNG_SHIFT;
190 f1 = frac << (32 - SNG_SHIFT);
191 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
192 }
193
194 /*
195 * 64-bit double -> fpn.
196 * We assume this uses at most (96-FP_LG) bits.
197 */
198 int
199 fpu_dtof(fp, i, j)
200 register struct fpn *fp;
201 register u_int i, j;
202 {
203 register int exp;
204 register u_int frac, f0, f1, f2;
205 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
206
207 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
208 frac = i & mask(DBL_FRACBITS - 32);
209 f0 = frac >> DBL_SHIFT;
210 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
211 f2 = j << (32 - DBL_SHIFT);
212 frac |= j;
213 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
214 }
215
216 /*
217 * 128-bit extended -> fpn.
218 */
219 int
220 fpu_qtof(fp, i, j, k, l)
221 register struct fpn *fp;
222 register u_int i, j, k, l;
223 {
224 register int exp;
225 register u_int frac, f0, f1, f2, f3;
226 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG)) /* left shift! */
227
228 /*
229 * Note that ext and fpn `line up', hence no shifting needed.
230 */
231 exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
232 frac = i & mask(EXT_FRACBITS - 3 * 32);
233 f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
234 f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
235 f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
236 f3 = l << EXT_SHIFT;
237 frac |= j | k | l;
238 FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
239 }
240
241 /*
242 * Explode the contents of a register / regpair / regquad.
243 * If the input is a signalling NaN, an NV (invalid) exception
244 * will be set. (Note that nothing but NV can occur until ALU
245 * operations are performed.)
246 */
247 void
248 fpu_explode(fe, fp, type, reg)
249 register struct fpemu *fe;
250 register struct fpn *fp;
251 int type, reg;
252 {
253 register u_int s, *space;
254 #ifdef SUN4U
255 u_int64_t l, *xspace;
256
257 xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
258 l = xspace[0];
259 #endif /* SUN4U */
260 space = &fe->fe_fpstate->fs_regs[reg];
261 s = space[0];
262 fp->fp_sign = s >> 31;
263 fp->fp_sticky = 0;
264 switch (type) {
265 #ifdef SUN4U
266 case FTYPE_LNG:
267 s = fpu_xtof(fp, l);
268 break;
269 #endif /* SUN4U */
270
271 case FTYPE_INT:
272 s = fpu_itof(fp, s);
273 break;
274
275 case FTYPE_SNG:
276 s = fpu_stof(fp, s);
277 break;
278
279 case FTYPE_DBL:
280 s = fpu_dtof(fp, s, space[1]);
281 break;
282
283 case FTYPE_EXT:
284 s = fpu_qtof(fp, s, space[1], space[2], space[3]);
285 break;
286
287 default:
288 panic("fpu_explode");
289 }
290
291 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
292 /*
293 * Input is a signalling NaN. All operations that return
294 * an input NaN operand put it through a ``NaN conversion'',
295 * which basically just means ``turn on the quiet bit''.
296 * We do this here so that all NaNs internally look quiet
297 * (we can tell signalling ones by their class).
298 */
299 fp->fp_mant[0] |= FP_QUIETBIT;
300 fe->fe_cx = FSR_NV; /* assert invalid operand */
301 s = FPC_SNAN;
302 }
303 fp->fp_class = s;
304 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
305 ((type == FTYPE_INT) ? 'i' :
306 ((type == FTYPE_SNG) ? 's' :
307 ((type == FTYPE_DBL) ? 'd' :
308 ((type == FTYPE_EXT) ? 'q' : '?')))),
309 reg));
310 DUMPFPN(FPE_REG, fp);
311 DPRINTF(FPE_REG, ("\n"));
312 }
313