Home | History | Annotate | Line # | Download | only in fpu
fpu_explode.c revision 1.6
      1 /*	$NetBSD: fpu_explode.c,v 1.6 2001/12/04 00:05:04 darrenr Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * FPU subroutines: `explode' the machine's `packed binary' format numbers
     49  * into our internal format.
     50  */
     51 
     52 #if defined(_KERNEL_OPT)
     53 #include "opt_sparc_arch.h"
     54 #endif
     55 
     56 #include <sys/types.h>
     57 #include <sys/systm.h>
     58 
     59 #include <machine/ieee.h>
     60 #include <machine/instr.h>
     61 #include <machine/reg.h>
     62 
     63 #include <sparc/fpu/fpu_arith.h>
     64 #include <sparc/fpu/fpu_emu.h>
     65 #include <sparc/fpu/fpu_extern.h>
     66 
     67 /*
     68  * N.B.: in all of the following, we assume the FP format is
     69  *
     70  *	---------------------------
     71  *	| s | exponent | fraction |
     72  *	---------------------------
     73  *
     74  * (which represents -1**s * 1.fraction * 2**exponent), so that the
     75  * sign bit is way at the top (bit 31), the exponent is next, and
     76  * then the remaining bits mark the fraction.  A zero exponent means
     77  * zero or denormalized (0.fraction rather than 1.fraction), and the
     78  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
     79  *
     80  * Since the sign bit is always the topmost bit---this holds even for
     81  * integers---we set that outside all the *tof functions.  Each function
     82  * returns the class code for the new number (but note that we use
     83  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
     84  */
     85 
     86 /*
     87  * int -> fpn.
     88  */
     89 int
     90 fpu_itof(fp, i)
     91 	register struct fpn *fp;
     92 	register u_int i;
     93 {
     94 
     95 	if (i == 0)
     96 		return (FPC_ZERO);
     97 	/*
     98 	 * The value FP_1 represents 2^FP_LG, so set the exponent
     99 	 * there and let normalization fix it up.  Convert negative
    100 	 * numbers to sign-and-magnitude.  Note that this relies on
    101 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    102 	 */
    103 	fp->fp_exp = FP_LG;
    104 	fp->fp_mant[0] = (int)i < 0 ? -i : i;
    105 	fp->fp_mant[1] = 0;
    106 	fp->fp_mant[2] = 0;
    107 	fp->fp_mant[3] = 0;
    108 	fpu_norm(fp);
    109 	return (FPC_NUM);
    110 }
    111 
    112 #ifdef SUN4U
    113 /*
    114  * 64-bit int -> fpn.
    115  */
    116 int
    117 fpu_xtof(fp, i)
    118 	register struct fpn *fp;
    119 	register u_int64_t i;
    120 {
    121 
    122 	if (i == 0)
    123 		return (FPC_ZERO);
    124 	/*
    125 	 * The value FP_1 represents 2^FP_LG, so set the exponent
    126 	 * there and let normalization fix it up.  Convert negative
    127 	 * numbers to sign-and-magnitude.  Note that this relies on
    128 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
    129 	 */
    130 	fp->fp_exp = FP_LG2;
    131 	*((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
    132 	fp->fp_mant[2] = 0;
    133 	fp->fp_mant[3] = 0;
    134 	fpu_norm(fp);
    135 	return (FPC_NUM);
    136 }
    137 #endif /* SUN4U */
    138 
    139 #define	mask(nbits) ((1L << (nbits)) - 1)
    140 
    141 /*
    142  * All external floating formats convert to internal in the same manner,
    143  * as defined here.  Note that only normals get an implied 1.0 inserted.
    144  */
    145 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
    146 	if (exp == 0) { \
    147 		if (allfrac == 0) \
    148 			return (FPC_ZERO); \
    149 		fp->fp_exp = 1 - expbias; \
    150 		fp->fp_mant[0] = f0; \
    151 		fp->fp_mant[1] = f1; \
    152 		fp->fp_mant[2] = f2; \
    153 		fp->fp_mant[3] = f3; \
    154 		fpu_norm(fp); \
    155 		return (FPC_NUM); \
    156 	} \
    157 	if (exp == (2 * expbias + 1)) { \
    158 		if (allfrac == 0) \
    159 			return (FPC_INF); \
    160 		fp->fp_mant[0] = f0; \
    161 		fp->fp_mant[1] = f1; \
    162 		fp->fp_mant[2] = f2; \
    163 		fp->fp_mant[3] = f3; \
    164 		return (FPC_QNAN); \
    165 	} \
    166 	fp->fp_exp = exp - expbias; \
    167 	fp->fp_mant[0] = FP_1 | f0; \
    168 	fp->fp_mant[1] = f1; \
    169 	fp->fp_mant[2] = f2; \
    170 	fp->fp_mant[3] = f3; \
    171 	return (FPC_NUM)
    172 
    173 /*
    174  * 32-bit single precision -> fpn.
    175  * We assume a single occupies at most (64-FP_LG) bits in the internal
    176  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
    177  */
    178 int
    179 fpu_stof(fp, i)
    180 	register struct fpn *fp;
    181 	register u_int i;
    182 {
    183 	register int exp;
    184 	register u_int frac, f0, f1;
    185 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
    186 
    187 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
    188 	frac = i & mask(SNG_FRACBITS);
    189 	f0 = frac >> SNG_SHIFT;
    190 	f1 = frac << (32 - SNG_SHIFT);
    191 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
    192 }
    193 
    194 /*
    195  * 64-bit double -> fpn.
    196  * We assume this uses at most (96-FP_LG) bits.
    197  */
    198 int
    199 fpu_dtof(fp, i, j)
    200 	register struct fpn *fp;
    201 	register u_int i, j;
    202 {
    203 	register int exp;
    204 	register u_int frac, f0, f1, f2;
    205 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
    206 
    207 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
    208 	frac = i & mask(DBL_FRACBITS - 32);
    209 	f0 = frac >> DBL_SHIFT;
    210 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
    211 	f2 = j << (32 - DBL_SHIFT);
    212 	frac |= j;
    213 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
    214 }
    215 
    216 /*
    217  * 128-bit extended -> fpn.
    218  */
    219 int
    220 fpu_qtof(fp, i, j, k, l)
    221 	register struct fpn *fp;
    222 	register u_int i, j, k, l;
    223 {
    224 	register int exp;
    225 	register u_int frac, f0, f1, f2, f3;
    226 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
    227 
    228 	/*
    229 	 * Note that ext and fpn `line up', hence no shifting needed.
    230 	 */
    231 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
    232 	frac = i & mask(EXT_FRACBITS - 3 * 32);
    233 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
    234 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
    235 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
    236 	f3 = l << EXT_SHIFT;
    237 	frac |= j | k | l;
    238 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
    239 }
    240 
    241 /*
    242  * Explode the contents of a register / regpair / regquad.
    243  * If the input is a signalling NaN, an NV (invalid) exception
    244  * will be set.  (Note that nothing but NV can occur until ALU
    245  * operations are performed.)
    246  */
    247 void
    248 fpu_explode(fe, fp, type, reg)
    249 	register struct fpemu *fe;
    250 	register struct fpn *fp;
    251 	int type, reg;
    252 {
    253 	register u_int s, *space;
    254 #ifdef SUN4U
    255 	u_int64_t l, *xspace;
    256 
    257 	xspace = (u_int64_t *)&fe->fe_fpstate->fs_regs[reg & ~1];
    258 	l = xspace[0];
    259 #endif /* SUN4U */
    260 	space = &fe->fe_fpstate->fs_regs[reg];
    261 	s = space[0];
    262 	fp->fp_sign = s >> 31;
    263 	fp->fp_sticky = 0;
    264 	switch (type) {
    265 #ifdef SUN4U
    266 	case FTYPE_LNG:
    267 		s = fpu_xtof(fp, l);
    268 		break;
    269 #endif /* SUN4U */
    270 
    271 	case FTYPE_INT:
    272 		s = fpu_itof(fp, s);
    273 		break;
    274 
    275 	case FTYPE_SNG:
    276 		s = fpu_stof(fp, s);
    277 		break;
    278 
    279 	case FTYPE_DBL:
    280 		s = fpu_dtof(fp, s, space[1]);
    281 		break;
    282 
    283 	case FTYPE_EXT:
    284 		s = fpu_qtof(fp, s, space[1], space[2], space[3]);
    285 		break;
    286 
    287 	default:
    288 		panic("fpu_explode");
    289 	}
    290 
    291 	if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
    292 		/*
    293 		 * Input is a signalling NaN.  All operations that return
    294 		 * an input NaN operand put it through a ``NaN conversion'',
    295 		 * which basically just means ``turn on the quiet bit''.
    296 		 * We do this here so that all NaNs internally look quiet
    297 		 * (we can tell signalling ones by their class).
    298 		 */
    299 		fp->fp_mant[0] |= FP_QUIETBIT;
    300 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
    301 		s = FPC_SNAN;
    302 	}
    303 	fp->fp_class = s;
    304 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
    305 		((type == FTYPE_INT) ? 'i' :
    306 			((type == FTYPE_SNG) ? 's' :
    307 				((type == FTYPE_DBL) ? 'd' :
    308 					((type == FTYPE_EXT) ? 'q' : '?')))),
    309 		reg));
    310 	DUMPFPN(FPE_REG, fp);
    311 	DPRINTF(FPE_REG, ("\n"));
    312 }
    313