1 1.6 rin /* $NetBSD: fpu_mul.c,v 1.6 2022/08/28 22:09:26 rin Exp $ */ 2 1.2 deraadt 3 1.1 deraadt /* 4 1.1 deraadt * Copyright (c) 1992, 1993 5 1.1 deraadt * The Regents of the University of California. All rights reserved. 6 1.1 deraadt * 7 1.1 deraadt * This software was developed by the Computer Systems Engineering group 8 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 deraadt * contributed to Berkeley. 10 1.1 deraadt * 11 1.1 deraadt * All advertising materials mentioning features or use of this software 12 1.1 deraadt * must display the following acknowledgement: 13 1.1 deraadt * This product includes software developed by the University of 14 1.1 deraadt * California, Lawrence Berkeley Laboratory. 15 1.1 deraadt * 16 1.1 deraadt * Redistribution and use in source and binary forms, with or without 17 1.1 deraadt * modification, are permitted provided that the following conditions 18 1.1 deraadt * are met: 19 1.1 deraadt * 1. Redistributions of source code must retain the above copyright 20 1.1 deraadt * notice, this list of conditions and the following disclaimer. 21 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 deraadt * notice, this list of conditions and the following disclaimer in the 23 1.1 deraadt * documentation and/or other materials provided with the distribution. 24 1.4 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 deraadt * may be used to endorse or promote products derived from this software 26 1.1 deraadt * without specific prior written permission. 27 1.1 deraadt * 28 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 deraadt * SUCH DAMAGE. 39 1.1 deraadt * 40 1.1 deraadt * @(#)fpu_mul.c 8.1 (Berkeley) 6/11/93 41 1.1 deraadt */ 42 1.1 deraadt 43 1.1 deraadt /* 44 1.1 deraadt * Perform an FPU multiply (return x * y). 45 1.1 deraadt */ 46 1.3 lukem 47 1.3 lukem #include <sys/cdefs.h> 48 1.6 rin __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.6 2022/08/28 22:09:26 rin Exp $"); 49 1.1 deraadt 50 1.1 deraadt #include <sys/types.h> 51 1.1 deraadt 52 1.1 deraadt #include <machine/reg.h> 53 1.1 deraadt 54 1.1 deraadt #include <sparc/fpu/fpu_arith.h> 55 1.1 deraadt #include <sparc/fpu/fpu_emu.h> 56 1.1 deraadt 57 1.1 deraadt /* 58 1.1 deraadt * The multiplication algorithm for normal numbers is as follows: 59 1.1 deraadt * 60 1.1 deraadt * The fraction of the product is built in the usual stepwise fashion. 61 1.1 deraadt * Each step consists of shifting the accumulator right one bit 62 1.1 deraadt * (maintaining any guard bits) and, if the next bit in y is set, 63 1.1 deraadt * adding the multiplicand (x) to the accumulator. Then, in any case, 64 1.1 deraadt * we advance one bit leftward in y. Algorithmically: 65 1.1 deraadt * 66 1.1 deraadt * A = 0; 67 1.1 deraadt * for (bit = 0; bit < FP_NMANT; bit++) { 68 1.1 deraadt * sticky |= A & 1, A >>= 1; 69 1.1 deraadt * if (Y & (1 << bit)) 70 1.1 deraadt * A += X; 71 1.1 deraadt * } 72 1.1 deraadt * 73 1.1 deraadt * (X and Y here represent the mantissas of x and y respectively.) 74 1.1 deraadt * The resultant accumulator (A) is the product's mantissa. It may 75 1.1 deraadt * be as large as 11.11111... in binary and hence may need to be 76 1.1 deraadt * shifted right, but at most one bit. 77 1.1 deraadt * 78 1.1 deraadt * Since we do not have efficient multiword arithmetic, we code the 79 1.1 deraadt * accumulator as four separate words, just like any other mantissa. 80 1.6 rin * We use local variables in the hope that this is faster than memory. 81 1.6 rin * We keep x->fp_mant in locals for the same reason. 82 1.1 deraadt * 83 1.1 deraadt * In the algorithm above, the bits in y are inspected one at a time. 84 1.1 deraadt * We will pick them up 32 at a time and then deal with those 32, one 85 1.1 deraadt * at a time. Note, however, that we know several things about y: 86 1.1 deraadt * 87 1.1 deraadt * - the guard and round bits at the bottom are sure to be zero; 88 1.1 deraadt * 89 1.1 deraadt * - often many low bits are zero (y is often from a single or double 90 1.1 deraadt * precision source); 91 1.1 deraadt * 92 1.1 deraadt * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word. 93 1.1 deraadt * 94 1.1 deraadt * We can also test for 32-zero-bits swiftly. In this case, the center 95 1.1 deraadt * part of the loop---setting sticky, shifting A, and not adding---will 96 1.1 deraadt * run 32 times without adding X to A. We can do a 32-bit shift faster 97 1.1 deraadt * by simply moving words. Since zeros are common, we optimize this case. 98 1.1 deraadt * Furthermore, since A is initially zero, we can omit the shift as well 99 1.1 deraadt * until we reach a nonzero word. 100 1.1 deraadt */ 101 1.1 deraadt struct fpn * 102 1.5 uwe fpu_mul(struct fpemu *fe) 103 1.1 deraadt { 104 1.6 rin struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; 105 1.6 rin u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m; 106 1.6 rin int sticky; 107 1.1 deraadt FPU_DECL_CARRY 108 1.1 deraadt 109 1.1 deraadt /* 110 1.1 deraadt * Put the `heavier' operand on the right (see fpu_emu.h). 111 1.1 deraadt * Then we will have one of the following cases, taken in the 112 1.1 deraadt * following order: 113 1.1 deraadt * 114 1.1 deraadt * - y = NaN. Implied: if only one is a signalling NaN, y is. 115 1.1 deraadt * The result is y. 116 1.1 deraadt * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN 117 1.1 deraadt * case was taken care of earlier). 118 1.1 deraadt * If x = 0, the result is NaN. Otherwise the result 119 1.1 deraadt * is y, with its sign reversed if x is negative. 120 1.1 deraadt * - x = 0. Implied: y is 0 or number. 121 1.1 deraadt * The result is 0 (with XORed sign as usual). 122 1.1 deraadt * - other. Implied: both x and y are numbers. 123 1.1 deraadt * The result is x * y (XOR sign, multiply bits, add exponents). 124 1.1 deraadt */ 125 1.1 deraadt ORDER(x, y); 126 1.1 deraadt if (ISNAN(y)) { 127 1.1 deraadt y->fp_sign ^= x->fp_sign; 128 1.1 deraadt return (y); 129 1.1 deraadt } 130 1.1 deraadt if (ISINF(y)) { 131 1.1 deraadt if (ISZERO(x)) 132 1.1 deraadt return (fpu_newnan(fe)); 133 1.1 deraadt y->fp_sign ^= x->fp_sign; 134 1.1 deraadt return (y); 135 1.1 deraadt } 136 1.1 deraadt if (ISZERO(x)) { 137 1.1 deraadt x->fp_sign ^= y->fp_sign; 138 1.1 deraadt return (x); 139 1.1 deraadt } 140 1.1 deraadt 141 1.1 deraadt /* 142 1.1 deraadt * Setup. In the code below, the mask `m' will hold the current 143 1.1 deraadt * mantissa byte from y. The variable `bit' denotes the bit 144 1.1 deraadt * within m. We also define some macros to deal with everything. 145 1.1 deraadt */ 146 1.1 deraadt x3 = x->fp_mant[3]; 147 1.1 deraadt x2 = x->fp_mant[2]; 148 1.1 deraadt x1 = x->fp_mant[1]; 149 1.1 deraadt x0 = x->fp_mant[0]; 150 1.1 deraadt sticky = a3 = a2 = a1 = a0 = 0; 151 1.1 deraadt 152 1.1 deraadt #define ADD /* A += X */ \ 153 1.1 deraadt FPU_ADDS(a3, a3, x3); \ 154 1.1 deraadt FPU_ADDCS(a2, a2, x2); \ 155 1.1 deraadt FPU_ADDCS(a1, a1, x1); \ 156 1.1 deraadt FPU_ADDC(a0, a0, x0) 157 1.1 deraadt 158 1.1 deraadt #define SHR1 /* A >>= 1, with sticky */ \ 159 1.1 deraadt sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \ 160 1.1 deraadt a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1 161 1.1 deraadt 162 1.1 deraadt #define SHR32 /* A >>= 32, with sticky */ \ 163 1.1 deraadt sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0 164 1.1 deraadt 165 1.1 deraadt #define STEP /* each 1-bit step of the multiplication */ \ 166 1.1 deraadt SHR1; if (bit & m) { ADD; }; bit <<= 1 167 1.1 deraadt 168 1.1 deraadt /* 169 1.1 deraadt * We are ready to begin. The multiply loop runs once for each 170 1.1 deraadt * of the four 32-bit words. Some words, however, are special. 171 1.1 deraadt * As noted above, the low order bits of Y are often zero. Even 172 1.1 deraadt * if not, the first loop can certainly skip the guard bits. 173 1.1 deraadt * The last word of y has its highest 1-bit in position FP_NMANT-1, 174 1.1 deraadt * so we stop the loop when we move past that bit. 175 1.1 deraadt */ 176 1.1 deraadt if ((m = y->fp_mant[3]) == 0) { 177 1.1 deraadt /* SHR32; */ /* unneeded since A==0 */ 178 1.1 deraadt } else { 179 1.1 deraadt bit = 1 << FP_NG; 180 1.1 deraadt do { 181 1.1 deraadt STEP; 182 1.1 deraadt } while (bit != 0); 183 1.1 deraadt } 184 1.1 deraadt if ((m = y->fp_mant[2]) == 0) { 185 1.1 deraadt SHR32; 186 1.1 deraadt } else { 187 1.1 deraadt bit = 1; 188 1.1 deraadt do { 189 1.1 deraadt STEP; 190 1.1 deraadt } while (bit != 0); 191 1.1 deraadt } 192 1.1 deraadt if ((m = y->fp_mant[1]) == 0) { 193 1.1 deraadt SHR32; 194 1.1 deraadt } else { 195 1.1 deraadt bit = 1; 196 1.1 deraadt do { 197 1.1 deraadt STEP; 198 1.1 deraadt } while (bit != 0); 199 1.1 deraadt } 200 1.1 deraadt m = y->fp_mant[0]; /* definitely != 0 */ 201 1.1 deraadt bit = 1; 202 1.1 deraadt do { 203 1.1 deraadt STEP; 204 1.1 deraadt } while (bit <= m); 205 1.1 deraadt 206 1.1 deraadt /* 207 1.1 deraadt * Done with mantissa calculation. Get exponent and handle 208 1.1 deraadt * 11.111...1 case, then put result in place. We reuse x since 209 1.1 deraadt * it already has the right class (FP_NUM). 210 1.1 deraadt */ 211 1.1 deraadt m = x->fp_exp + y->fp_exp; 212 1.1 deraadt if (a0 >= FP_2) { 213 1.1 deraadt SHR1; 214 1.1 deraadt m++; 215 1.1 deraadt } 216 1.1 deraadt x->fp_sign ^= y->fp_sign; 217 1.1 deraadt x->fp_exp = m; 218 1.1 deraadt x->fp_sticky = sticky; 219 1.1 deraadt x->fp_mant[3] = a3; 220 1.1 deraadt x->fp_mant[2] = a2; 221 1.1 deraadt x->fp_mant[1] = a1; 222 1.1 deraadt x->fp_mant[0] = a0; 223 1.1 deraadt return (x); 224 1.1 deraadt } 225