Home | History | Annotate | Line # | Download | only in fpu
fpu_mul.c revision 1.1
      1  1.1  deraadt /*
      2  1.1  deraadt  * Copyright (c) 1992, 1993
      3  1.1  deraadt  *	The Regents of the University of California.  All rights reserved.
      4  1.1  deraadt  *
      5  1.1  deraadt  * This software was developed by the Computer Systems Engineering group
      6  1.1  deraadt  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  1.1  deraadt  * contributed to Berkeley.
      8  1.1  deraadt  *
      9  1.1  deraadt  * All advertising materials mentioning features or use of this software
     10  1.1  deraadt  * must display the following acknowledgement:
     11  1.1  deraadt  *	This product includes software developed by the University of
     12  1.1  deraadt  *	California, Lawrence Berkeley Laboratory.
     13  1.1  deraadt  *
     14  1.1  deraadt  * Redistribution and use in source and binary forms, with or without
     15  1.1  deraadt  * modification, are permitted provided that the following conditions
     16  1.1  deraadt  * are met:
     17  1.1  deraadt  * 1. Redistributions of source code must retain the above copyright
     18  1.1  deraadt  *    notice, this list of conditions and the following disclaimer.
     19  1.1  deraadt  * 2. Redistributions in binary form must reproduce the above copyright
     20  1.1  deraadt  *    notice, this list of conditions and the following disclaimer in the
     21  1.1  deraadt  *    documentation and/or other materials provided with the distribution.
     22  1.1  deraadt  * 3. All advertising materials mentioning features or use of this software
     23  1.1  deraadt  *    must display the following acknowledgement:
     24  1.1  deraadt  *	This product includes software developed by the University of
     25  1.1  deraadt  *	California, Berkeley and its contributors.
     26  1.1  deraadt  * 4. Neither the name of the University nor the names of its contributors
     27  1.1  deraadt  *    may be used to endorse or promote products derived from this software
     28  1.1  deraadt  *    without specific prior written permission.
     29  1.1  deraadt  *
     30  1.1  deraadt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  1.1  deraadt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  1.1  deraadt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  1.1  deraadt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  1.1  deraadt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  1.1  deraadt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  1.1  deraadt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  1.1  deraadt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  1.1  deraadt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  1.1  deraadt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  1.1  deraadt  * SUCH DAMAGE.
     41  1.1  deraadt  *
     42  1.1  deraadt  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
     43  1.1  deraadt  *
     44  1.1  deraadt  * from: Header: fpu_mul.c,v 1.3 92/11/26 01:39:50 torek Exp
     45  1.1  deraadt  * $Id: fpu_mul.c,v 1.1 1993/10/02 10:22:59 deraadt Exp $
     46  1.1  deraadt  */
     47  1.1  deraadt 
     48  1.1  deraadt /*
     49  1.1  deraadt  * Perform an FPU multiply (return x * y).
     50  1.1  deraadt  */
     51  1.1  deraadt 
     52  1.1  deraadt #include <sys/types.h>
     53  1.1  deraadt 
     54  1.1  deraadt #include <machine/reg.h>
     55  1.1  deraadt 
     56  1.1  deraadt #include <sparc/fpu/fpu_arith.h>
     57  1.1  deraadt #include <sparc/fpu/fpu_emu.h>
     58  1.1  deraadt 
     59  1.1  deraadt /*
     60  1.1  deraadt  * The multiplication algorithm for normal numbers is as follows:
     61  1.1  deraadt  *
     62  1.1  deraadt  * The fraction of the product is built in the usual stepwise fashion.
     63  1.1  deraadt  * Each step consists of shifting the accumulator right one bit
     64  1.1  deraadt  * (maintaining any guard bits) and, if the next bit in y is set,
     65  1.1  deraadt  * adding the multiplicand (x) to the accumulator.  Then, in any case,
     66  1.1  deraadt  * we advance one bit leftward in y.  Algorithmically:
     67  1.1  deraadt  *
     68  1.1  deraadt  *	A = 0;
     69  1.1  deraadt  *	for (bit = 0; bit < FP_NMANT; bit++) {
     70  1.1  deraadt  *		sticky |= A & 1, A >>= 1;
     71  1.1  deraadt  *		if (Y & (1 << bit))
     72  1.1  deraadt  *			A += X;
     73  1.1  deraadt  *	}
     74  1.1  deraadt  *
     75  1.1  deraadt  * (X and Y here represent the mantissas of x and y respectively.)
     76  1.1  deraadt  * The resultant accumulator (A) is the product's mantissa.  It may
     77  1.1  deraadt  * be as large as 11.11111... in binary and hence may need to be
     78  1.1  deraadt  * shifted right, but at most one bit.
     79  1.1  deraadt  *
     80  1.1  deraadt  * Since we do not have efficient multiword arithmetic, we code the
     81  1.1  deraadt  * accumulator as four separate words, just like any other mantissa.
     82  1.1  deraadt  * We use local `register' variables in the hope that this is faster
     83  1.1  deraadt  * than memory.  We keep x->fp_mant in locals for the same reason.
     84  1.1  deraadt  *
     85  1.1  deraadt  * In the algorithm above, the bits in y are inspected one at a time.
     86  1.1  deraadt  * We will pick them up 32 at a time and then deal with those 32, one
     87  1.1  deraadt  * at a time.  Note, however, that we know several things about y:
     88  1.1  deraadt  *
     89  1.1  deraadt  *    - the guard and round bits at the bottom are sure to be zero;
     90  1.1  deraadt  *
     91  1.1  deraadt  *    - often many low bits are zero (y is often from a single or double
     92  1.1  deraadt  *	precision source);
     93  1.1  deraadt  *
     94  1.1  deraadt  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
     95  1.1  deraadt  *
     96  1.1  deraadt  * We can also test for 32-zero-bits swiftly.  In this case, the center
     97  1.1  deraadt  * part of the loop---setting sticky, shifting A, and not adding---will
     98  1.1  deraadt  * run 32 times without adding X to A.  We can do a 32-bit shift faster
     99  1.1  deraadt  * by simply moving words.  Since zeros are common, we optimize this case.
    100  1.1  deraadt  * Furthermore, since A is initially zero, we can omit the shift as well
    101  1.1  deraadt  * until we reach a nonzero word.
    102  1.1  deraadt  */
    103  1.1  deraadt struct fpn *
    104  1.1  deraadt fpu_mul(fe)
    105  1.1  deraadt 	register struct fpemu *fe;
    106  1.1  deraadt {
    107  1.1  deraadt 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    108  1.1  deraadt 	register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
    109  1.1  deraadt 	register int sticky;
    110  1.1  deraadt 	FPU_DECL_CARRY
    111  1.1  deraadt 
    112  1.1  deraadt 	/*
    113  1.1  deraadt 	 * Put the `heavier' operand on the right (see fpu_emu.h).
    114  1.1  deraadt 	 * Then we will have one of the following cases, taken in the
    115  1.1  deraadt 	 * following order:
    116  1.1  deraadt 	 *
    117  1.1  deraadt 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
    118  1.1  deraadt 	 *	The result is y.
    119  1.1  deraadt 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
    120  1.1  deraadt 	 *    case was taken care of earlier).
    121  1.1  deraadt 	 *	If x = 0, the result is NaN.  Otherwise the result
    122  1.1  deraadt 	 *	is y, with its sign reversed if x is negative.
    123  1.1  deraadt 	 *  - x = 0.  Implied: y is 0 or number.
    124  1.1  deraadt 	 *	The result is 0 (with XORed sign as usual).
    125  1.1  deraadt 	 *  - other.  Implied: both x and y are numbers.
    126  1.1  deraadt 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
    127  1.1  deraadt 	 */
    128  1.1  deraadt 	ORDER(x, y);
    129  1.1  deraadt 	if (ISNAN(y)) {
    130  1.1  deraadt 		y->fp_sign ^= x->fp_sign;
    131  1.1  deraadt 		return (y);
    132  1.1  deraadt 	}
    133  1.1  deraadt 	if (ISINF(y)) {
    134  1.1  deraadt 		if (ISZERO(x))
    135  1.1  deraadt 			return (fpu_newnan(fe));
    136  1.1  deraadt 		y->fp_sign ^= x->fp_sign;
    137  1.1  deraadt 		return (y);
    138  1.1  deraadt 	}
    139  1.1  deraadt 	if (ISZERO(x)) {
    140  1.1  deraadt 		x->fp_sign ^= y->fp_sign;
    141  1.1  deraadt 		return (x);
    142  1.1  deraadt 	}
    143  1.1  deraadt 
    144  1.1  deraadt 	/*
    145  1.1  deraadt 	 * Setup.  In the code below, the mask `m' will hold the current
    146  1.1  deraadt 	 * mantissa byte from y.  The variable `bit' denotes the bit
    147  1.1  deraadt 	 * within m.  We also define some macros to deal with everything.
    148  1.1  deraadt 	 */
    149  1.1  deraadt 	x3 = x->fp_mant[3];
    150  1.1  deraadt 	x2 = x->fp_mant[2];
    151  1.1  deraadt 	x1 = x->fp_mant[1];
    152  1.1  deraadt 	x0 = x->fp_mant[0];
    153  1.1  deraadt 	sticky = a3 = a2 = a1 = a0 = 0;
    154  1.1  deraadt 
    155  1.1  deraadt #define	ADD	/* A += X */ \
    156  1.1  deraadt 	FPU_ADDS(a3, a3, x3); \
    157  1.1  deraadt 	FPU_ADDCS(a2, a2, x2); \
    158  1.1  deraadt 	FPU_ADDCS(a1, a1, x1); \
    159  1.1  deraadt 	FPU_ADDC(a0, a0, x0)
    160  1.1  deraadt 
    161  1.1  deraadt #define	SHR1	/* A >>= 1, with sticky */ \
    162  1.1  deraadt 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
    163  1.1  deraadt 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
    164  1.1  deraadt 
    165  1.1  deraadt #define	SHR32	/* A >>= 32, with sticky */ \
    166  1.1  deraadt 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
    167  1.1  deraadt 
    168  1.1  deraadt #define	STEP	/* each 1-bit step of the multiplication */ \
    169  1.1  deraadt 	SHR1; if (bit & m) { ADD; }; bit <<= 1
    170  1.1  deraadt 
    171  1.1  deraadt 	/*
    172  1.1  deraadt 	 * We are ready to begin.  The multiply loop runs once for each
    173  1.1  deraadt 	 * of the four 32-bit words.  Some words, however, are special.
    174  1.1  deraadt 	 * As noted above, the low order bits of Y are often zero.  Even
    175  1.1  deraadt 	 * if not, the first loop can certainly skip the guard bits.
    176  1.1  deraadt 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
    177  1.1  deraadt 	 * so we stop the loop when we move past that bit.
    178  1.1  deraadt 	 */
    179  1.1  deraadt 	if ((m = y->fp_mant[3]) == 0) {
    180  1.1  deraadt 		/* SHR32; */			/* unneeded since A==0 */
    181  1.1  deraadt 	} else {
    182  1.1  deraadt 		bit = 1 << FP_NG;
    183  1.1  deraadt 		do {
    184  1.1  deraadt 			STEP;
    185  1.1  deraadt 		} while (bit != 0);
    186  1.1  deraadt 	}
    187  1.1  deraadt 	if ((m = y->fp_mant[2]) == 0) {
    188  1.1  deraadt 		SHR32;
    189  1.1  deraadt 	} else {
    190  1.1  deraadt 		bit = 1;
    191  1.1  deraadt 		do {
    192  1.1  deraadt 			STEP;
    193  1.1  deraadt 		} while (bit != 0);
    194  1.1  deraadt 	}
    195  1.1  deraadt 	if ((m = y->fp_mant[1]) == 0) {
    196  1.1  deraadt 		SHR32;
    197  1.1  deraadt 	} else {
    198  1.1  deraadt 		bit = 1;
    199  1.1  deraadt 		do {
    200  1.1  deraadt 			STEP;
    201  1.1  deraadt 		} while (bit != 0);
    202  1.1  deraadt 	}
    203  1.1  deraadt 	m = y->fp_mant[0];		/* definitely != 0 */
    204  1.1  deraadt 	bit = 1;
    205  1.1  deraadt 	do {
    206  1.1  deraadt 		STEP;
    207  1.1  deraadt 	} while (bit <= m);
    208  1.1  deraadt 
    209  1.1  deraadt 	/*
    210  1.1  deraadt 	 * Done with mantissa calculation.  Get exponent and handle
    211  1.1  deraadt 	 * 11.111...1 case, then put result in place.  We reuse x since
    212  1.1  deraadt 	 * it already has the right class (FP_NUM).
    213  1.1  deraadt 	 */
    214  1.1  deraadt 	m = x->fp_exp + y->fp_exp;
    215  1.1  deraadt 	if (a0 >= FP_2) {
    216  1.1  deraadt 		SHR1;
    217  1.1  deraadt 		m++;
    218  1.1  deraadt 	}
    219  1.1  deraadt 	x->fp_sign ^= y->fp_sign;
    220  1.1  deraadt 	x->fp_exp = m;
    221  1.1  deraadt 	x->fp_sticky = sticky;
    222  1.1  deraadt 	x->fp_mant[3] = a3;
    223  1.1  deraadt 	x->fp_mant[2] = a2;
    224  1.1  deraadt 	x->fp_mant[1] = a1;
    225  1.1  deraadt 	x->fp_mant[0] = a0;
    226  1.1  deraadt 	return (x);
    227  1.1  deraadt }
    228