fpu_mul.c revision 1.3 1 1.3 lukem /* $NetBSD: fpu_mul.c,v 1.3 2003/07/15 00:04:59 lukem Exp $ */
2 1.2 deraadt
3 1.1 deraadt /*
4 1.1 deraadt * Copyright (c) 1992, 1993
5 1.1 deraadt * The Regents of the University of California. All rights reserved.
6 1.1 deraadt *
7 1.1 deraadt * This software was developed by the Computer Systems Engineering group
8 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 deraadt * contributed to Berkeley.
10 1.1 deraadt *
11 1.1 deraadt * All advertising materials mentioning features or use of this software
12 1.1 deraadt * must display the following acknowledgement:
13 1.1 deraadt * This product includes software developed by the University of
14 1.1 deraadt * California, Lawrence Berkeley Laboratory.
15 1.1 deraadt *
16 1.1 deraadt * Redistribution and use in source and binary forms, with or without
17 1.1 deraadt * modification, are permitted provided that the following conditions
18 1.1 deraadt * are met:
19 1.1 deraadt * 1. Redistributions of source code must retain the above copyright
20 1.1 deraadt * notice, this list of conditions and the following disclaimer.
21 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 deraadt * notice, this list of conditions and the following disclaimer in the
23 1.1 deraadt * documentation and/or other materials provided with the distribution.
24 1.1 deraadt * 3. All advertising materials mentioning features or use of this software
25 1.1 deraadt * must display the following acknowledgement:
26 1.1 deraadt * This product includes software developed by the University of
27 1.1 deraadt * California, Berkeley and its contributors.
28 1.1 deraadt * 4. Neither the name of the University nor the names of its contributors
29 1.1 deraadt * may be used to endorse or promote products derived from this software
30 1.1 deraadt * without specific prior written permission.
31 1.1 deraadt *
32 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 deraadt * SUCH DAMAGE.
43 1.1 deraadt *
44 1.1 deraadt * @(#)fpu_mul.c 8.1 (Berkeley) 6/11/93
45 1.1 deraadt */
46 1.1 deraadt
47 1.1 deraadt /*
48 1.1 deraadt * Perform an FPU multiply (return x * y).
49 1.1 deraadt */
50 1.3 lukem
51 1.3 lukem #include <sys/cdefs.h>
52 1.3 lukem __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.3 2003/07/15 00:04:59 lukem Exp $");
53 1.1 deraadt
54 1.1 deraadt #include <sys/types.h>
55 1.1 deraadt
56 1.1 deraadt #include <machine/reg.h>
57 1.1 deraadt
58 1.1 deraadt #include <sparc/fpu/fpu_arith.h>
59 1.1 deraadt #include <sparc/fpu/fpu_emu.h>
60 1.1 deraadt
61 1.1 deraadt /*
62 1.1 deraadt * The multiplication algorithm for normal numbers is as follows:
63 1.1 deraadt *
64 1.1 deraadt * The fraction of the product is built in the usual stepwise fashion.
65 1.1 deraadt * Each step consists of shifting the accumulator right one bit
66 1.1 deraadt * (maintaining any guard bits) and, if the next bit in y is set,
67 1.1 deraadt * adding the multiplicand (x) to the accumulator. Then, in any case,
68 1.1 deraadt * we advance one bit leftward in y. Algorithmically:
69 1.1 deraadt *
70 1.1 deraadt * A = 0;
71 1.1 deraadt * for (bit = 0; bit < FP_NMANT; bit++) {
72 1.1 deraadt * sticky |= A & 1, A >>= 1;
73 1.1 deraadt * if (Y & (1 << bit))
74 1.1 deraadt * A += X;
75 1.1 deraadt * }
76 1.1 deraadt *
77 1.1 deraadt * (X and Y here represent the mantissas of x and y respectively.)
78 1.1 deraadt * The resultant accumulator (A) is the product's mantissa. It may
79 1.1 deraadt * be as large as 11.11111... in binary and hence may need to be
80 1.1 deraadt * shifted right, but at most one bit.
81 1.1 deraadt *
82 1.1 deraadt * Since we do not have efficient multiword arithmetic, we code the
83 1.1 deraadt * accumulator as four separate words, just like any other mantissa.
84 1.1 deraadt * We use local `register' variables in the hope that this is faster
85 1.1 deraadt * than memory. We keep x->fp_mant in locals for the same reason.
86 1.1 deraadt *
87 1.1 deraadt * In the algorithm above, the bits in y are inspected one at a time.
88 1.1 deraadt * We will pick them up 32 at a time and then deal with those 32, one
89 1.1 deraadt * at a time. Note, however, that we know several things about y:
90 1.1 deraadt *
91 1.1 deraadt * - the guard and round bits at the bottom are sure to be zero;
92 1.1 deraadt *
93 1.1 deraadt * - often many low bits are zero (y is often from a single or double
94 1.1 deraadt * precision source);
95 1.1 deraadt *
96 1.1 deraadt * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
97 1.1 deraadt *
98 1.1 deraadt * We can also test for 32-zero-bits swiftly. In this case, the center
99 1.1 deraadt * part of the loop---setting sticky, shifting A, and not adding---will
100 1.1 deraadt * run 32 times without adding X to A. We can do a 32-bit shift faster
101 1.1 deraadt * by simply moving words. Since zeros are common, we optimize this case.
102 1.1 deraadt * Furthermore, since A is initially zero, we can omit the shift as well
103 1.1 deraadt * until we reach a nonzero word.
104 1.1 deraadt */
105 1.1 deraadt struct fpn *
106 1.1 deraadt fpu_mul(fe)
107 1.1 deraadt register struct fpemu *fe;
108 1.1 deraadt {
109 1.1 deraadt register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
110 1.1 deraadt register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
111 1.1 deraadt register int sticky;
112 1.1 deraadt FPU_DECL_CARRY
113 1.1 deraadt
114 1.1 deraadt /*
115 1.1 deraadt * Put the `heavier' operand on the right (see fpu_emu.h).
116 1.1 deraadt * Then we will have one of the following cases, taken in the
117 1.1 deraadt * following order:
118 1.1 deraadt *
119 1.1 deraadt * - y = NaN. Implied: if only one is a signalling NaN, y is.
120 1.1 deraadt * The result is y.
121 1.1 deraadt * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN
122 1.1 deraadt * case was taken care of earlier).
123 1.1 deraadt * If x = 0, the result is NaN. Otherwise the result
124 1.1 deraadt * is y, with its sign reversed if x is negative.
125 1.1 deraadt * - x = 0. Implied: y is 0 or number.
126 1.1 deraadt * The result is 0 (with XORed sign as usual).
127 1.1 deraadt * - other. Implied: both x and y are numbers.
128 1.1 deraadt * The result is x * y (XOR sign, multiply bits, add exponents).
129 1.1 deraadt */
130 1.1 deraadt ORDER(x, y);
131 1.1 deraadt if (ISNAN(y)) {
132 1.1 deraadt y->fp_sign ^= x->fp_sign;
133 1.1 deraadt return (y);
134 1.1 deraadt }
135 1.1 deraadt if (ISINF(y)) {
136 1.1 deraadt if (ISZERO(x))
137 1.1 deraadt return (fpu_newnan(fe));
138 1.1 deraadt y->fp_sign ^= x->fp_sign;
139 1.1 deraadt return (y);
140 1.1 deraadt }
141 1.1 deraadt if (ISZERO(x)) {
142 1.1 deraadt x->fp_sign ^= y->fp_sign;
143 1.1 deraadt return (x);
144 1.1 deraadt }
145 1.1 deraadt
146 1.1 deraadt /*
147 1.1 deraadt * Setup. In the code below, the mask `m' will hold the current
148 1.1 deraadt * mantissa byte from y. The variable `bit' denotes the bit
149 1.1 deraadt * within m. We also define some macros to deal with everything.
150 1.1 deraadt */
151 1.1 deraadt x3 = x->fp_mant[3];
152 1.1 deraadt x2 = x->fp_mant[2];
153 1.1 deraadt x1 = x->fp_mant[1];
154 1.1 deraadt x0 = x->fp_mant[0];
155 1.1 deraadt sticky = a3 = a2 = a1 = a0 = 0;
156 1.1 deraadt
157 1.1 deraadt #define ADD /* A += X */ \
158 1.1 deraadt FPU_ADDS(a3, a3, x3); \
159 1.1 deraadt FPU_ADDCS(a2, a2, x2); \
160 1.1 deraadt FPU_ADDCS(a1, a1, x1); \
161 1.1 deraadt FPU_ADDC(a0, a0, x0)
162 1.1 deraadt
163 1.1 deraadt #define SHR1 /* A >>= 1, with sticky */ \
164 1.1 deraadt sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
165 1.1 deraadt a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
166 1.1 deraadt
167 1.1 deraadt #define SHR32 /* A >>= 32, with sticky */ \
168 1.1 deraadt sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
169 1.1 deraadt
170 1.1 deraadt #define STEP /* each 1-bit step of the multiplication */ \
171 1.1 deraadt SHR1; if (bit & m) { ADD; }; bit <<= 1
172 1.1 deraadt
173 1.1 deraadt /*
174 1.1 deraadt * We are ready to begin. The multiply loop runs once for each
175 1.1 deraadt * of the four 32-bit words. Some words, however, are special.
176 1.1 deraadt * As noted above, the low order bits of Y are often zero. Even
177 1.1 deraadt * if not, the first loop can certainly skip the guard bits.
178 1.1 deraadt * The last word of y has its highest 1-bit in position FP_NMANT-1,
179 1.1 deraadt * so we stop the loop when we move past that bit.
180 1.1 deraadt */
181 1.1 deraadt if ((m = y->fp_mant[3]) == 0) {
182 1.1 deraadt /* SHR32; */ /* unneeded since A==0 */
183 1.1 deraadt } else {
184 1.1 deraadt bit = 1 << FP_NG;
185 1.1 deraadt do {
186 1.1 deraadt STEP;
187 1.1 deraadt } while (bit != 0);
188 1.1 deraadt }
189 1.1 deraadt if ((m = y->fp_mant[2]) == 0) {
190 1.1 deraadt SHR32;
191 1.1 deraadt } else {
192 1.1 deraadt bit = 1;
193 1.1 deraadt do {
194 1.1 deraadt STEP;
195 1.1 deraadt } while (bit != 0);
196 1.1 deraadt }
197 1.1 deraadt if ((m = y->fp_mant[1]) == 0) {
198 1.1 deraadt SHR32;
199 1.1 deraadt } else {
200 1.1 deraadt bit = 1;
201 1.1 deraadt do {
202 1.1 deraadt STEP;
203 1.1 deraadt } while (bit != 0);
204 1.1 deraadt }
205 1.1 deraadt m = y->fp_mant[0]; /* definitely != 0 */
206 1.1 deraadt bit = 1;
207 1.1 deraadt do {
208 1.1 deraadt STEP;
209 1.1 deraadt } while (bit <= m);
210 1.1 deraadt
211 1.1 deraadt /*
212 1.1 deraadt * Done with mantissa calculation. Get exponent and handle
213 1.1 deraadt * 11.111...1 case, then put result in place. We reuse x since
214 1.1 deraadt * it already has the right class (FP_NUM).
215 1.1 deraadt */
216 1.1 deraadt m = x->fp_exp + y->fp_exp;
217 1.1 deraadt if (a0 >= FP_2) {
218 1.1 deraadt SHR1;
219 1.1 deraadt m++;
220 1.1 deraadt }
221 1.1 deraadt x->fp_sign ^= y->fp_sign;
222 1.1 deraadt x->fp_exp = m;
223 1.1 deraadt x->fp_sticky = sticky;
224 1.1 deraadt x->fp_mant[3] = a3;
225 1.1 deraadt x->fp_mant[2] = a2;
226 1.1 deraadt x->fp_mant[1] = a1;
227 1.1 deraadt x->fp_mant[0] = a0;
228 1.1 deraadt return (x);
229 1.1 deraadt }
230