Home | History | Annotate | Line # | Download | only in fpu
fpu_mul.c revision 1.1
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * All advertising materials mentioning features or use of this software
     10  * must display the following acknowledgement:
     11  *	This product includes software developed by the University of
     12  *	California, Lawrence Berkeley Laboratory.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *	This product includes software developed by the University of
     25  *	California, Berkeley and its contributors.
     26  * 4. Neither the name of the University nor the names of its contributors
     27  *    may be used to endorse or promote products derived from this software
     28  *    without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  * SUCH DAMAGE.
     41  *
     42  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
     43  *
     44  * from: Header: fpu_mul.c,v 1.3 92/11/26 01:39:50 torek Exp
     45  * $Id: fpu_mul.c,v 1.1 1993/10/02 10:22:59 deraadt Exp $
     46  */
     47 
     48 /*
     49  * Perform an FPU multiply (return x * y).
     50  */
     51 
     52 #include <sys/types.h>
     53 
     54 #include <machine/reg.h>
     55 
     56 #include <sparc/fpu/fpu_arith.h>
     57 #include <sparc/fpu/fpu_emu.h>
     58 
     59 /*
     60  * The multiplication algorithm for normal numbers is as follows:
     61  *
     62  * The fraction of the product is built in the usual stepwise fashion.
     63  * Each step consists of shifting the accumulator right one bit
     64  * (maintaining any guard bits) and, if the next bit in y is set,
     65  * adding the multiplicand (x) to the accumulator.  Then, in any case,
     66  * we advance one bit leftward in y.  Algorithmically:
     67  *
     68  *	A = 0;
     69  *	for (bit = 0; bit < FP_NMANT; bit++) {
     70  *		sticky |= A & 1, A >>= 1;
     71  *		if (Y & (1 << bit))
     72  *			A += X;
     73  *	}
     74  *
     75  * (X and Y here represent the mantissas of x and y respectively.)
     76  * The resultant accumulator (A) is the product's mantissa.  It may
     77  * be as large as 11.11111... in binary and hence may need to be
     78  * shifted right, but at most one bit.
     79  *
     80  * Since we do not have efficient multiword arithmetic, we code the
     81  * accumulator as four separate words, just like any other mantissa.
     82  * We use local `register' variables in the hope that this is faster
     83  * than memory.  We keep x->fp_mant in locals for the same reason.
     84  *
     85  * In the algorithm above, the bits in y are inspected one at a time.
     86  * We will pick them up 32 at a time and then deal with those 32, one
     87  * at a time.  Note, however, that we know several things about y:
     88  *
     89  *    - the guard and round bits at the bottom are sure to be zero;
     90  *
     91  *    - often many low bits are zero (y is often from a single or double
     92  *	precision source);
     93  *
     94  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
     95  *
     96  * We can also test for 32-zero-bits swiftly.  In this case, the center
     97  * part of the loop---setting sticky, shifting A, and not adding---will
     98  * run 32 times without adding X to A.  We can do a 32-bit shift faster
     99  * by simply moving words.  Since zeros are common, we optimize this case.
    100  * Furthermore, since A is initially zero, we can omit the shift as well
    101  * until we reach a nonzero word.
    102  */
    103 struct fpn *
    104 fpu_mul(fe)
    105 	register struct fpemu *fe;
    106 {
    107 	register struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    108 	register u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
    109 	register int sticky;
    110 	FPU_DECL_CARRY
    111 
    112 	/*
    113 	 * Put the `heavier' operand on the right (see fpu_emu.h).
    114 	 * Then we will have one of the following cases, taken in the
    115 	 * following order:
    116 	 *
    117 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
    118 	 *	The result is y.
    119 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
    120 	 *    case was taken care of earlier).
    121 	 *	If x = 0, the result is NaN.  Otherwise the result
    122 	 *	is y, with its sign reversed if x is negative.
    123 	 *  - x = 0.  Implied: y is 0 or number.
    124 	 *	The result is 0 (with XORed sign as usual).
    125 	 *  - other.  Implied: both x and y are numbers.
    126 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
    127 	 */
    128 	ORDER(x, y);
    129 	if (ISNAN(y)) {
    130 		y->fp_sign ^= x->fp_sign;
    131 		return (y);
    132 	}
    133 	if (ISINF(y)) {
    134 		if (ISZERO(x))
    135 			return (fpu_newnan(fe));
    136 		y->fp_sign ^= x->fp_sign;
    137 		return (y);
    138 	}
    139 	if (ISZERO(x)) {
    140 		x->fp_sign ^= y->fp_sign;
    141 		return (x);
    142 	}
    143 
    144 	/*
    145 	 * Setup.  In the code below, the mask `m' will hold the current
    146 	 * mantissa byte from y.  The variable `bit' denotes the bit
    147 	 * within m.  We also define some macros to deal with everything.
    148 	 */
    149 	x3 = x->fp_mant[3];
    150 	x2 = x->fp_mant[2];
    151 	x1 = x->fp_mant[1];
    152 	x0 = x->fp_mant[0];
    153 	sticky = a3 = a2 = a1 = a0 = 0;
    154 
    155 #define	ADD	/* A += X */ \
    156 	FPU_ADDS(a3, a3, x3); \
    157 	FPU_ADDCS(a2, a2, x2); \
    158 	FPU_ADDCS(a1, a1, x1); \
    159 	FPU_ADDC(a0, a0, x0)
    160 
    161 #define	SHR1	/* A >>= 1, with sticky */ \
    162 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
    163 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
    164 
    165 #define	SHR32	/* A >>= 32, with sticky */ \
    166 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
    167 
    168 #define	STEP	/* each 1-bit step of the multiplication */ \
    169 	SHR1; if (bit & m) { ADD; }; bit <<= 1
    170 
    171 	/*
    172 	 * We are ready to begin.  The multiply loop runs once for each
    173 	 * of the four 32-bit words.  Some words, however, are special.
    174 	 * As noted above, the low order bits of Y are often zero.  Even
    175 	 * if not, the first loop can certainly skip the guard bits.
    176 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
    177 	 * so we stop the loop when we move past that bit.
    178 	 */
    179 	if ((m = y->fp_mant[3]) == 0) {
    180 		/* SHR32; */			/* unneeded since A==0 */
    181 	} else {
    182 		bit = 1 << FP_NG;
    183 		do {
    184 			STEP;
    185 		} while (bit != 0);
    186 	}
    187 	if ((m = y->fp_mant[2]) == 0) {
    188 		SHR32;
    189 	} else {
    190 		bit = 1;
    191 		do {
    192 			STEP;
    193 		} while (bit != 0);
    194 	}
    195 	if ((m = y->fp_mant[1]) == 0) {
    196 		SHR32;
    197 	} else {
    198 		bit = 1;
    199 		do {
    200 			STEP;
    201 		} while (bit != 0);
    202 	}
    203 	m = y->fp_mant[0];		/* definitely != 0 */
    204 	bit = 1;
    205 	do {
    206 		STEP;
    207 	} while (bit <= m);
    208 
    209 	/*
    210 	 * Done with mantissa calculation.  Get exponent and handle
    211 	 * 11.111...1 case, then put result in place.  We reuse x since
    212 	 * it already has the right class (FP_NUM).
    213 	 */
    214 	m = x->fp_exp + y->fp_exp;
    215 	if (a0 >= FP_2) {
    216 		SHR1;
    217 		m++;
    218 	}
    219 	x->fp_sign ^= y->fp_sign;
    220 	x->fp_exp = m;
    221 	x->fp_sticky = sticky;
    222 	x->fp_mant[3] = a3;
    223 	x->fp_mant[2] = a2;
    224 	x->fp_mant[1] = a1;
    225 	x->fp_mant[0] = a0;
    226 	return (x);
    227 }
    228