Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.3
      1  1.3    lukem /*	$NetBSD: fpu_sqrt.c,v 1.3 2003/07/15 00:05:00 lukem Exp $ */
      2  1.2  deraadt 
      3  1.1  deraadt /*
      4  1.1  deraadt  * Copyright (c) 1992, 1993
      5  1.1  deraadt  *	The Regents of the University of California.  All rights reserved.
      6  1.1  deraadt  *
      7  1.1  deraadt  * This software was developed by the Computer Systems Engineering group
      8  1.1  deraadt  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1  deraadt  * contributed to Berkeley.
     10  1.1  deraadt  *
     11  1.1  deraadt  * All advertising materials mentioning features or use of this software
     12  1.1  deraadt  * must display the following acknowledgement:
     13  1.1  deraadt  *	This product includes software developed by the University of
     14  1.1  deraadt  *	California, Lawrence Berkeley Laboratory.
     15  1.1  deraadt  *
     16  1.1  deraadt  * Redistribution and use in source and binary forms, with or without
     17  1.1  deraadt  * modification, are permitted provided that the following conditions
     18  1.1  deraadt  * are met:
     19  1.1  deraadt  * 1. Redistributions of source code must retain the above copyright
     20  1.1  deraadt  *    notice, this list of conditions and the following disclaimer.
     21  1.1  deraadt  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1  deraadt  *    notice, this list of conditions and the following disclaimer in the
     23  1.1  deraadt  *    documentation and/or other materials provided with the distribution.
     24  1.1  deraadt  * 3. All advertising materials mentioning features or use of this software
     25  1.1  deraadt  *    must display the following acknowledgement:
     26  1.1  deraadt  *	This product includes software developed by the University of
     27  1.1  deraadt  *	California, Berkeley and its contributors.
     28  1.1  deraadt  * 4. Neither the name of the University nor the names of its contributors
     29  1.1  deraadt  *    may be used to endorse or promote products derived from this software
     30  1.1  deraadt  *    without specific prior written permission.
     31  1.1  deraadt  *
     32  1.1  deraadt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  1.1  deraadt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  1.1  deraadt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  1.1  deraadt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  1.1  deraadt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  1.1  deraadt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  1.1  deraadt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  1.1  deraadt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  1.1  deraadt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  1.1  deraadt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  1.1  deraadt  * SUCH DAMAGE.
     43  1.1  deraadt  *
     44  1.1  deraadt  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     45  1.1  deraadt  */
     46  1.1  deraadt 
     47  1.1  deraadt /*
     48  1.1  deraadt  * Perform an FPU square root (return sqrt(x)).
     49  1.1  deraadt  */
     50  1.3    lukem 
     51  1.3    lukem #include <sys/cdefs.h>
     52  1.3    lukem __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.3 2003/07/15 00:05:00 lukem Exp $");
     53  1.1  deraadt 
     54  1.1  deraadt #include <sys/types.h>
     55  1.1  deraadt 
     56  1.1  deraadt #include <machine/reg.h>
     57  1.1  deraadt 
     58  1.1  deraadt #include <sparc/fpu/fpu_arith.h>
     59  1.1  deraadt #include <sparc/fpu/fpu_emu.h>
     60  1.1  deraadt 
     61  1.1  deraadt /*
     62  1.1  deraadt  * Our task is to calculate the square root of a floating point number x0.
     63  1.1  deraadt  * This number x normally has the form:
     64  1.1  deraadt  *
     65  1.1  deraadt  *		    exp
     66  1.1  deraadt  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     67  1.1  deraadt  *
     68  1.1  deraadt  * This can be left as it stands, or the mantissa can be doubled and the
     69  1.1  deraadt  * exponent decremented:
     70  1.1  deraadt  *
     71  1.1  deraadt  *			  exp-1
     72  1.1  deraadt  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     73  1.1  deraadt  *
     74  1.1  deraadt  * If the exponent `exp' is even, the square root of the number is best
     75  1.1  deraadt  * handled using the first form, and is by definition equal to:
     76  1.1  deraadt  *
     77  1.1  deraadt  *				exp/2
     78  1.1  deraadt  *	sqrt(x) = sqrt(mant) * 2
     79  1.1  deraadt  *
     80  1.1  deraadt  * If exp is odd, on the other hand, it is convenient to use the second
     81  1.1  deraadt  * form, giving:
     82  1.1  deraadt  *
     83  1.1  deraadt  *				    (exp-1)/2
     84  1.1  deraadt  *	sqrt(x) = sqrt(2 * mant) * 2
     85  1.1  deraadt  *
     86  1.1  deraadt  * In the first case, we have
     87  1.1  deraadt  *
     88  1.1  deraadt  *	1 <= mant < 2
     89  1.1  deraadt  *
     90  1.1  deraadt  * and therefore
     91  1.1  deraadt  *
     92  1.1  deraadt  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     93  1.1  deraadt  *
     94  1.1  deraadt  * while in the second case we have
     95  1.1  deraadt  *
     96  1.1  deraadt  *	2 <= 2*mant < 4
     97  1.1  deraadt  *
     98  1.1  deraadt  * and therefore
     99  1.1  deraadt  *
    100  1.1  deraadt  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
    101  1.1  deraadt  *
    102  1.1  deraadt  * so that in any case, we are sure that
    103  1.1  deraadt  *
    104  1.1  deraadt  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    105  1.1  deraadt  *
    106  1.1  deraadt  * or
    107  1.1  deraadt  *
    108  1.1  deraadt  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    109  1.1  deraadt  *
    110  1.1  deraadt  * This root is therefore a properly formed mantissa for a floating
    111  1.1  deraadt  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    112  1.1  deraadt  * as above.  This leaves us with the problem of finding the square root
    113  1.1  deraadt  * of a fixed-point number in the range [1..4).
    114  1.1  deraadt  *
    115  1.1  deraadt  * Though it may not be instantly obvious, the following square root
    116  1.1  deraadt  * algorithm works for any integer x of an even number of bits, provided
    117  1.1  deraadt  * that no overflows occur:
    118  1.1  deraadt  *
    119  1.1  deraadt  *	let q = 0
    120  1.1  deraadt  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    121  1.1  deraadt  *		x *= 2			-- multiply by radix, for next digit
    122  1.1  deraadt  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    123  1.1  deraadt  *			x -= 2q + 2^k	-- exceed the correct root,
    124  1.1  deraadt  *			q += 2^k	-- add 2^k and adjust x
    125  1.1  deraadt  *		fi
    126  1.1  deraadt  *	done
    127  1.1  deraadt  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    128  1.1  deraadt  *
    129  1.1  deraadt  * If NBITS is odd (so that k is initially even), we can just add another
    130  1.1  deraadt  * zero bit at the top of x.  Doing so means that q is not going to acquire
    131  1.1  deraadt  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    132  1.1  deraadt  * final value in x is not needed, or can be off by a factor of 2, this is
    133  1.1  deraadt  * equivalant to moving the `x *= 2' step to the bottom of the loop:
    134  1.1  deraadt  *
    135  1.1  deraadt  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    136  1.1  deraadt  *
    137  1.1  deraadt  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    138  1.1  deraadt  * (Since the algorithm is destructive on x, we will call x's initial
    139  1.1  deraadt  * value, for which q is some power of two times its square root, x0.)
    140  1.1  deraadt  *
    141  1.1  deraadt  * If we insert a loop invariant y = 2q, we can then rewrite this using
    142  1.1  deraadt  * C notation as:
    143  1.1  deraadt  *
    144  1.1  deraadt  *	q = y = 0; x = x0;
    145  1.1  deraadt  *	for (k = NBITS; --k >= 0;) {
    146  1.1  deraadt  * #if (NBITS is even)
    147  1.1  deraadt  *		x *= 2;
    148  1.1  deraadt  * #endif
    149  1.1  deraadt  *		t = y + (1 << k);
    150  1.1  deraadt  *		if (x >= t) {
    151  1.1  deraadt  *			x -= t;
    152  1.1  deraadt  *			q += 1 << k;
    153  1.1  deraadt  *			y += 1 << (k + 1);
    154  1.1  deraadt  *		}
    155  1.1  deraadt  * #if (NBITS is odd)
    156  1.1  deraadt  *		x *= 2;
    157  1.1  deraadt  * #endif
    158  1.1  deraadt  *	}
    159  1.1  deraadt  *
    160  1.1  deraadt  * If x0 is fixed point, rather than an integer, we can simply alter the
    161  1.1  deraadt  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    162  1.1  deraadt  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    163  1.1  deraadt  *
    164  1.1  deraadt  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    165  1.1  deraadt  * integers, which adds some complication.  But note that q is built one
    166  1.1  deraadt  * bit at a time, from the top down, and is not used itself in the loop
    167  1.1  deraadt  * (we use 2q as held in y instead).  This means we can build our answer
    168  1.1  deraadt  * in an integer, one word at a time, which saves a bit of work.  Also,
    169  1.1  deraadt  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    170  1.1  deraadt  * `new' bits in y and we can set them with an `or' operation rather than
    171  1.1  deraadt  * a full-blown multiword add.
    172  1.1  deraadt  *
    173  1.1  deraadt  * We are almost done, except for one snag.  We must prove that none of our
    174  1.1  deraadt  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    175  1.1  deraadt  * and therefore the square root in q will be in [1..2), but what about x,
    176  1.1  deraadt  * y, and t?
    177  1.1  deraadt  *
    178  1.1  deraadt  * We know that y = 2q at the beginning of each loop.  (The relation only
    179  1.1  deraadt  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    180  1.1  deraadt  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    181  1.1  deraadt  * Furthermore, we can prove with a bit of work that x never exceeds y by
    182  1.1  deraadt  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    183  1.1  deraadt  * an exercise to the reader, mostly because I have become tired of working
    184  1.1  deraadt  * on this comment.)
    185  1.1  deraadt  *
    186  1.1  deraadt  * If our floating point mantissas (which are of the form 1.frac) occupy
    187  1.1  deraadt  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    188  1.1  deraadt  * In fact, we want even one more bit (for a carry, to avoid compares), or
    189  1.1  deraadt  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    190  1.1  deraadt  * this, so we have some justification in assuming it.
    191  1.1  deraadt  */
    192  1.1  deraadt struct fpn *
    193  1.1  deraadt fpu_sqrt(fe)
    194  1.1  deraadt 	struct fpemu *fe;
    195  1.1  deraadt {
    196  1.1  deraadt 	register struct fpn *x = &fe->fe_f1;
    197  1.1  deraadt 	register u_int bit, q, tt;
    198  1.1  deraadt 	register u_int x0, x1, x2, x3;
    199  1.1  deraadt 	register u_int y0, y1, y2, y3;
    200  1.1  deraadt 	register u_int d0, d1, d2, d3;
    201  1.1  deraadt 	register int e;
    202  1.1  deraadt 
    203  1.1  deraadt 	/*
    204  1.1  deraadt 	 * Take care of special cases first.  In order:
    205  1.1  deraadt 	 *
    206  1.1  deraadt 	 *	sqrt(NaN) = NaN
    207  1.1  deraadt 	 *	sqrt(+0) = +0
    208  1.1  deraadt 	 *	sqrt(-0) = -0
    209  1.1  deraadt 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    210  1.1  deraadt 	 *	sqrt(+Inf) = +Inf
    211  1.1  deraadt 	 *
    212  1.1  deraadt 	 * Then all that remains are numbers with mantissas in [1..2).
    213  1.1  deraadt 	 */
    214  1.1  deraadt 	if (ISNAN(x) || ISZERO(x))
    215  1.1  deraadt 		return (x);
    216  1.1  deraadt 	if (x->fp_sign)
    217  1.1  deraadt 		return (fpu_newnan(fe));
    218  1.1  deraadt 	if (ISINF(x))
    219  1.1  deraadt 		return (x);
    220  1.1  deraadt 
    221  1.1  deraadt 	/*
    222  1.1  deraadt 	 * Calculate result exponent.  As noted above, this may involve
    223  1.1  deraadt 	 * doubling the mantissa.  We will also need to double x each
    224  1.1  deraadt 	 * time around the loop, so we define a macro for this here, and
    225  1.1  deraadt 	 * we break out the multiword mantissa.
    226  1.1  deraadt 	 */
    227  1.1  deraadt #ifdef FPU_SHL1_BY_ADD
    228  1.1  deraadt #define	DOUBLE_X { \
    229  1.1  deraadt 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    230  1.1  deraadt 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    231  1.1  deraadt }
    232  1.1  deraadt #else
    233  1.1  deraadt #define	DOUBLE_X { \
    234  1.1  deraadt 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    235  1.1  deraadt 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    236  1.1  deraadt }
    237  1.1  deraadt #endif
    238  1.1  deraadt #if (FP_NMANT & 1) != 0
    239  1.1  deraadt # define ODD_DOUBLE	DOUBLE_X
    240  1.1  deraadt # define EVEN_DOUBLE	/* nothing */
    241  1.1  deraadt #else
    242  1.1  deraadt # define ODD_DOUBLE	/* nothing */
    243  1.1  deraadt # define EVEN_DOUBLE	DOUBLE_X
    244  1.1  deraadt #endif
    245  1.1  deraadt 	x0 = x->fp_mant[0];
    246  1.1  deraadt 	x1 = x->fp_mant[1];
    247  1.1  deraadt 	x2 = x->fp_mant[2];
    248  1.1  deraadt 	x3 = x->fp_mant[3];
    249  1.1  deraadt 	e = x->fp_exp;
    250  1.1  deraadt 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    251  1.1  deraadt 		DOUBLE_X;
    252  1.1  deraadt 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    253  1.1  deraadt 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    254  1.1  deraadt 
    255  1.1  deraadt 	/*
    256  1.1  deraadt 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    257  1.1  deraadt 	 * we know that the first trip around the loop will definitely
    258  1.1  deraadt 	 * set the top bit in q, so we can do that manually and start
    259  1.1  deraadt 	 * the loop at the next bit down instead.  We must be sure to
    260  1.1  deraadt 	 * double x correctly while doing the `known q=1.0'.
    261  1.1  deraadt 	 *
    262  1.1  deraadt 	 * We do this one mantissa-word at a time, as noted above, to
    263  1.1  deraadt 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    264  1.1  deraadt 	 * outside of each per-word loop.
    265  1.1  deraadt 	 *
    266  1.1  deraadt 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    267  1.1  deraadt 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    268  1.1  deraadt 	 * is always a `new' one, this means that three of the `t?'s are
    269  1.1  deraadt 	 * just the corresponding `y?'; we use `#define's here for this.
    270  1.1  deraadt 	 * The variable `tt' holds the actual `t?' variable.
    271  1.1  deraadt 	 */
    272  1.1  deraadt 
    273  1.1  deraadt 	/* calculate q0 */
    274  1.1  deraadt #define	t0 tt
    275  1.1  deraadt 	bit = FP_1;
    276  1.1  deraadt 	EVEN_DOUBLE;
    277  1.1  deraadt 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    278  1.1  deraadt 		q = bit;
    279  1.1  deraadt 		x0 -= bit;
    280  1.1  deraadt 		y0 = bit << 1;
    281  1.1  deraadt 	/* } */
    282  1.1  deraadt 	ODD_DOUBLE;
    283  1.1  deraadt 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    284  1.1  deraadt 		EVEN_DOUBLE;
    285  1.1  deraadt 		t0 = y0 | bit;		/* t = y + bit */
    286  1.1  deraadt 		if (x0 >= t0) {		/* if x >= t then */
    287  1.1  deraadt 			x0 -= t0;	/*	x -= t */
    288  1.1  deraadt 			q |= bit;	/*	q += bit */
    289  1.1  deraadt 			y0 |= bit << 1;	/*	y += bit << 1 */
    290  1.1  deraadt 		}
    291  1.1  deraadt 		ODD_DOUBLE;
    292  1.1  deraadt 	}
    293  1.1  deraadt 	x->fp_mant[0] = q;
    294  1.1  deraadt #undef t0
    295  1.1  deraadt 
    296  1.1  deraadt 	/* calculate q1.  note (y0&1)==0. */
    297  1.1  deraadt #define t0 y0
    298  1.1  deraadt #define t1 tt
    299  1.1  deraadt 	q = 0;
    300  1.1  deraadt 	y1 = 0;
    301  1.1  deraadt 	bit = 1 << 31;
    302  1.1  deraadt 	EVEN_DOUBLE;
    303  1.1  deraadt 	t1 = bit;
    304  1.1  deraadt 	FPU_SUBS(d1, x1, t1);
    305  1.1  deraadt 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    306  1.1  deraadt 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    307  1.1  deraadt 		x0 = d0, x1 = d1;	/*	x -= t */
    308  1.1  deraadt 		q = bit;		/*	q += bit */
    309  1.1  deraadt 		y0 |= 1;		/*	y += bit << 1 */
    310  1.1  deraadt 	}
    311  1.1  deraadt 	ODD_DOUBLE;
    312  1.1  deraadt 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    313  1.1  deraadt 		EVEN_DOUBLE;		/* as before */
    314  1.1  deraadt 		t1 = y1 | bit;
    315  1.1  deraadt 		FPU_SUBS(d1, x1, t1);
    316  1.1  deraadt 		FPU_SUBC(d0, x0, t0);
    317  1.1  deraadt 		if ((int)d0 >= 0) {
    318  1.1  deraadt 			x0 = d0, x1 = d1;
    319  1.1  deraadt 			q |= bit;
    320  1.1  deraadt 			y1 |= bit << 1;
    321  1.1  deraadt 		}
    322  1.1  deraadt 		ODD_DOUBLE;
    323  1.1  deraadt 	}
    324  1.1  deraadt 	x->fp_mant[1] = q;
    325  1.1  deraadt #undef t1
    326  1.1  deraadt 
    327  1.1  deraadt 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    328  1.1  deraadt #define t1 y1
    329  1.1  deraadt #define t2 tt
    330  1.1  deraadt 	q = 0;
    331  1.1  deraadt 	y2 = 0;
    332  1.1  deraadt 	bit = 1 << 31;
    333  1.1  deraadt 	EVEN_DOUBLE;
    334  1.1  deraadt 	t2 = bit;
    335  1.1  deraadt 	FPU_SUBS(d2, x2, t2);
    336  1.1  deraadt 	FPU_SUBCS(d1, x1, t1);
    337  1.1  deraadt 	FPU_SUBC(d0, x0, t0);
    338  1.1  deraadt 	if ((int)d0 >= 0) {
    339  1.1  deraadt 		x0 = d0, x1 = d1, x2 = d2;
    340  1.1  deraadt 		q |= bit;
    341  1.1  deraadt 		y1 |= 1;		/* now t1, y1 are set in concrete */
    342  1.1  deraadt 	}
    343  1.1  deraadt 	ODD_DOUBLE;
    344  1.1  deraadt 	while ((bit >>= 1) != 0) {
    345  1.1  deraadt 		EVEN_DOUBLE;
    346  1.1  deraadt 		t2 = y2 | bit;
    347  1.1  deraadt 		FPU_SUBS(d2, x2, t2);
    348  1.1  deraadt 		FPU_SUBCS(d1, x1, t1);
    349  1.1  deraadt 		FPU_SUBC(d0, x0, t0);
    350  1.1  deraadt 		if ((int)d0 >= 0) {
    351  1.1  deraadt 			x0 = d0, x1 = d1, x2 = d2;
    352  1.1  deraadt 			q |= bit;
    353  1.1  deraadt 			y2 |= bit << 1;
    354  1.1  deraadt 		}
    355  1.1  deraadt 		ODD_DOUBLE;
    356  1.1  deraadt 	}
    357  1.1  deraadt 	x->fp_mant[2] = q;
    358  1.1  deraadt #undef t2
    359  1.1  deraadt 
    360  1.1  deraadt 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    361  1.1  deraadt #define t2 y2
    362  1.1  deraadt #define t3 tt
    363  1.1  deraadt 	q = 0;
    364  1.1  deraadt 	y3 = 0;
    365  1.1  deraadt 	bit = 1 << 31;
    366  1.1  deraadt 	EVEN_DOUBLE;
    367  1.1  deraadt 	t3 = bit;
    368  1.1  deraadt 	FPU_SUBS(d3, x3, t3);
    369  1.1  deraadt 	FPU_SUBCS(d2, x2, t2);
    370  1.1  deraadt 	FPU_SUBCS(d1, x1, t1);
    371  1.1  deraadt 	FPU_SUBC(d0, x0, t0);
    372  1.1  deraadt 	ODD_DOUBLE;
    373  1.1  deraadt 	if ((int)d0 >= 0) {
    374  1.1  deraadt 		x0 = d0, x1 = d1, x2 = d2;
    375  1.1  deraadt 		q |= bit;
    376  1.1  deraadt 		y2 |= 1;
    377  1.1  deraadt 	}
    378  1.1  deraadt 	while ((bit >>= 1) != 0) {
    379  1.1  deraadt 		EVEN_DOUBLE;
    380  1.1  deraadt 		t3 = y3 | bit;
    381  1.1  deraadt 		FPU_SUBS(d3, x3, t3);
    382  1.1  deraadt 		FPU_SUBCS(d2, x2, t2);
    383  1.1  deraadt 		FPU_SUBCS(d1, x1, t1);
    384  1.1  deraadt 		FPU_SUBC(d0, x0, t0);
    385  1.1  deraadt 		if ((int)d0 >= 0) {
    386  1.1  deraadt 			x0 = d0, x1 = d1, x2 = d2;
    387  1.1  deraadt 			q |= bit;
    388  1.1  deraadt 			y3 |= bit << 1;
    389  1.1  deraadt 		}
    390  1.1  deraadt 		ODD_DOUBLE;
    391  1.1  deraadt 	}
    392  1.1  deraadt 	x->fp_mant[3] = q;
    393  1.1  deraadt 
    394  1.1  deraadt 	/*
    395  1.1  deraadt 	 * The result, which includes guard and round bits, is exact iff
    396  1.1  deraadt 	 * x is now zero; any nonzero bits in x represent sticky bits.
    397  1.1  deraadt 	 */
    398  1.1  deraadt 	x->fp_sticky = x0 | x1 | x2 | x3;
    399  1.1  deraadt 	return (x);
    400  1.1  deraadt }
    401