fpu_sqrt.c revision 1.3 1 1.3 lukem /* $NetBSD: fpu_sqrt.c,v 1.3 2003/07/15 00:05:00 lukem Exp $ */
2 1.2 deraadt
3 1.1 deraadt /*
4 1.1 deraadt * Copyright (c) 1992, 1993
5 1.1 deraadt * The Regents of the University of California. All rights reserved.
6 1.1 deraadt *
7 1.1 deraadt * This software was developed by the Computer Systems Engineering group
8 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 deraadt * contributed to Berkeley.
10 1.1 deraadt *
11 1.1 deraadt * All advertising materials mentioning features or use of this software
12 1.1 deraadt * must display the following acknowledgement:
13 1.1 deraadt * This product includes software developed by the University of
14 1.1 deraadt * California, Lawrence Berkeley Laboratory.
15 1.1 deraadt *
16 1.1 deraadt * Redistribution and use in source and binary forms, with or without
17 1.1 deraadt * modification, are permitted provided that the following conditions
18 1.1 deraadt * are met:
19 1.1 deraadt * 1. Redistributions of source code must retain the above copyright
20 1.1 deraadt * notice, this list of conditions and the following disclaimer.
21 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 deraadt * notice, this list of conditions and the following disclaimer in the
23 1.1 deraadt * documentation and/or other materials provided with the distribution.
24 1.1 deraadt * 3. All advertising materials mentioning features or use of this software
25 1.1 deraadt * must display the following acknowledgement:
26 1.1 deraadt * This product includes software developed by the University of
27 1.1 deraadt * California, Berkeley and its contributors.
28 1.1 deraadt * 4. Neither the name of the University nor the names of its contributors
29 1.1 deraadt * may be used to endorse or promote products derived from this software
30 1.1 deraadt * without specific prior written permission.
31 1.1 deraadt *
32 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 deraadt * SUCH DAMAGE.
43 1.1 deraadt *
44 1.1 deraadt * @(#)fpu_sqrt.c 8.1 (Berkeley) 6/11/93
45 1.1 deraadt */
46 1.1 deraadt
47 1.1 deraadt /*
48 1.1 deraadt * Perform an FPU square root (return sqrt(x)).
49 1.1 deraadt */
50 1.3 lukem
51 1.3 lukem #include <sys/cdefs.h>
52 1.3 lukem __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.3 2003/07/15 00:05:00 lukem Exp $");
53 1.1 deraadt
54 1.1 deraadt #include <sys/types.h>
55 1.1 deraadt
56 1.1 deraadt #include <machine/reg.h>
57 1.1 deraadt
58 1.1 deraadt #include <sparc/fpu/fpu_arith.h>
59 1.1 deraadt #include <sparc/fpu/fpu_emu.h>
60 1.1 deraadt
61 1.1 deraadt /*
62 1.1 deraadt * Our task is to calculate the square root of a floating point number x0.
63 1.1 deraadt * This number x normally has the form:
64 1.1 deraadt *
65 1.1 deraadt * exp
66 1.1 deraadt * x = mant * 2 (where 1 <= mant < 2 and exp is an integer)
67 1.1 deraadt *
68 1.1 deraadt * This can be left as it stands, or the mantissa can be doubled and the
69 1.1 deraadt * exponent decremented:
70 1.1 deraadt *
71 1.1 deraadt * exp-1
72 1.1 deraadt * x = (2 * mant) * 2 (where 2 <= 2 * mant < 4)
73 1.1 deraadt *
74 1.1 deraadt * If the exponent `exp' is even, the square root of the number is best
75 1.1 deraadt * handled using the first form, and is by definition equal to:
76 1.1 deraadt *
77 1.1 deraadt * exp/2
78 1.1 deraadt * sqrt(x) = sqrt(mant) * 2
79 1.1 deraadt *
80 1.1 deraadt * If exp is odd, on the other hand, it is convenient to use the second
81 1.1 deraadt * form, giving:
82 1.1 deraadt *
83 1.1 deraadt * (exp-1)/2
84 1.1 deraadt * sqrt(x) = sqrt(2 * mant) * 2
85 1.1 deraadt *
86 1.1 deraadt * In the first case, we have
87 1.1 deraadt *
88 1.1 deraadt * 1 <= mant < 2
89 1.1 deraadt *
90 1.1 deraadt * and therefore
91 1.1 deraadt *
92 1.1 deraadt * sqrt(1) <= sqrt(mant) < sqrt(2)
93 1.1 deraadt *
94 1.1 deraadt * while in the second case we have
95 1.1 deraadt *
96 1.1 deraadt * 2 <= 2*mant < 4
97 1.1 deraadt *
98 1.1 deraadt * and therefore
99 1.1 deraadt *
100 1.1 deraadt * sqrt(2) <= sqrt(2*mant) < sqrt(4)
101 1.1 deraadt *
102 1.1 deraadt * so that in any case, we are sure that
103 1.1 deraadt *
104 1.1 deraadt * sqrt(1) <= sqrt(n * mant) < sqrt(4), n = 1 or 2
105 1.1 deraadt *
106 1.1 deraadt * or
107 1.1 deraadt *
108 1.1 deraadt * 1 <= sqrt(n * mant) < 2, n = 1 or 2.
109 1.1 deraadt *
110 1.1 deraadt * This root is therefore a properly formed mantissa for a floating
111 1.1 deraadt * point number. The exponent of sqrt(x) is either exp/2 or (exp-1)/2
112 1.1 deraadt * as above. This leaves us with the problem of finding the square root
113 1.1 deraadt * of a fixed-point number in the range [1..4).
114 1.1 deraadt *
115 1.1 deraadt * Though it may not be instantly obvious, the following square root
116 1.1 deraadt * algorithm works for any integer x of an even number of bits, provided
117 1.1 deraadt * that no overflows occur:
118 1.1 deraadt *
119 1.1 deraadt * let q = 0
120 1.1 deraadt * for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
121 1.1 deraadt * x *= 2 -- multiply by radix, for next digit
122 1.1 deraadt * if x >= 2q + 2^k then -- if adding 2^k does not
123 1.1 deraadt * x -= 2q + 2^k -- exceed the correct root,
124 1.1 deraadt * q += 2^k -- add 2^k and adjust x
125 1.1 deraadt * fi
126 1.1 deraadt * done
127 1.1 deraadt * sqrt = q / 2^(NBITS/2) -- (and any remainder is in x)
128 1.1 deraadt *
129 1.1 deraadt * If NBITS is odd (so that k is initially even), we can just add another
130 1.1 deraadt * zero bit at the top of x. Doing so means that q is not going to acquire
131 1.1 deraadt * a 1 bit in the first trip around the loop (since x0 < 2^NBITS). If the
132 1.1 deraadt * final value in x is not needed, or can be off by a factor of 2, this is
133 1.1 deraadt * equivalant to moving the `x *= 2' step to the bottom of the loop:
134 1.1 deraadt *
135 1.1 deraadt * for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
136 1.1 deraadt *
137 1.1 deraadt * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
138 1.1 deraadt * (Since the algorithm is destructive on x, we will call x's initial
139 1.1 deraadt * value, for which q is some power of two times its square root, x0.)
140 1.1 deraadt *
141 1.1 deraadt * If we insert a loop invariant y = 2q, we can then rewrite this using
142 1.1 deraadt * C notation as:
143 1.1 deraadt *
144 1.1 deraadt * q = y = 0; x = x0;
145 1.1 deraadt * for (k = NBITS; --k >= 0;) {
146 1.1 deraadt * #if (NBITS is even)
147 1.1 deraadt * x *= 2;
148 1.1 deraadt * #endif
149 1.1 deraadt * t = y + (1 << k);
150 1.1 deraadt * if (x >= t) {
151 1.1 deraadt * x -= t;
152 1.1 deraadt * q += 1 << k;
153 1.1 deraadt * y += 1 << (k + 1);
154 1.1 deraadt * }
155 1.1 deraadt * #if (NBITS is odd)
156 1.1 deraadt * x *= 2;
157 1.1 deraadt * #endif
158 1.1 deraadt * }
159 1.1 deraadt *
160 1.1 deraadt * If x0 is fixed point, rather than an integer, we can simply alter the
161 1.1 deraadt * scale factor between q and sqrt(x0). As it happens, we can easily arrange
162 1.1 deraadt * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
163 1.1 deraadt *
164 1.1 deraadt * In our case, however, x0 (and therefore x, y, q, and t) are multiword
165 1.1 deraadt * integers, which adds some complication. But note that q is built one
166 1.1 deraadt * bit at a time, from the top down, and is not used itself in the loop
167 1.1 deraadt * (we use 2q as held in y instead). This means we can build our answer
168 1.1 deraadt * in an integer, one word at a time, which saves a bit of work. Also,
169 1.1 deraadt * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
170 1.1 deraadt * `new' bits in y and we can set them with an `or' operation rather than
171 1.1 deraadt * a full-blown multiword add.
172 1.1 deraadt *
173 1.1 deraadt * We are almost done, except for one snag. We must prove that none of our
174 1.1 deraadt * intermediate calculations can overflow. We know that x0 is in [1..4)
175 1.1 deraadt * and therefore the square root in q will be in [1..2), but what about x,
176 1.1 deraadt * y, and t?
177 1.1 deraadt *
178 1.1 deraadt * We know that y = 2q at the beginning of each loop. (The relation only
179 1.1 deraadt * fails temporarily while y and q are being updated.) Since q < 2, y < 4.
180 1.1 deraadt * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
181 1.1 deraadt * Furthermore, we can prove with a bit of work that x never exceeds y by
182 1.1 deraadt * more than 2, so that even after doubling, 0 <= x < 8. (This is left as
183 1.1 deraadt * an exercise to the reader, mostly because I have become tired of working
184 1.1 deraadt * on this comment.)
185 1.1 deraadt *
186 1.1 deraadt * If our floating point mantissas (which are of the form 1.frac) occupy
187 1.1 deraadt * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
188 1.1 deraadt * In fact, we want even one more bit (for a carry, to avoid compares), or
189 1.1 deraadt * three extra. There is a comment in fpu_emu.h reminding maintainers of
190 1.1 deraadt * this, so we have some justification in assuming it.
191 1.1 deraadt */
192 1.1 deraadt struct fpn *
193 1.1 deraadt fpu_sqrt(fe)
194 1.1 deraadt struct fpemu *fe;
195 1.1 deraadt {
196 1.1 deraadt register struct fpn *x = &fe->fe_f1;
197 1.1 deraadt register u_int bit, q, tt;
198 1.1 deraadt register u_int x0, x1, x2, x3;
199 1.1 deraadt register u_int y0, y1, y2, y3;
200 1.1 deraadt register u_int d0, d1, d2, d3;
201 1.1 deraadt register int e;
202 1.1 deraadt
203 1.1 deraadt /*
204 1.1 deraadt * Take care of special cases first. In order:
205 1.1 deraadt *
206 1.1 deraadt * sqrt(NaN) = NaN
207 1.1 deraadt * sqrt(+0) = +0
208 1.1 deraadt * sqrt(-0) = -0
209 1.1 deraadt * sqrt(x < 0) = NaN (including sqrt(-Inf))
210 1.1 deraadt * sqrt(+Inf) = +Inf
211 1.1 deraadt *
212 1.1 deraadt * Then all that remains are numbers with mantissas in [1..2).
213 1.1 deraadt */
214 1.1 deraadt if (ISNAN(x) || ISZERO(x))
215 1.1 deraadt return (x);
216 1.1 deraadt if (x->fp_sign)
217 1.1 deraadt return (fpu_newnan(fe));
218 1.1 deraadt if (ISINF(x))
219 1.1 deraadt return (x);
220 1.1 deraadt
221 1.1 deraadt /*
222 1.1 deraadt * Calculate result exponent. As noted above, this may involve
223 1.1 deraadt * doubling the mantissa. We will also need to double x each
224 1.1 deraadt * time around the loop, so we define a macro for this here, and
225 1.1 deraadt * we break out the multiword mantissa.
226 1.1 deraadt */
227 1.1 deraadt #ifdef FPU_SHL1_BY_ADD
228 1.1 deraadt #define DOUBLE_X { \
229 1.1 deraadt FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
230 1.1 deraadt FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
231 1.1 deraadt }
232 1.1 deraadt #else
233 1.1 deraadt #define DOUBLE_X { \
234 1.1 deraadt x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
235 1.1 deraadt x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
236 1.1 deraadt }
237 1.1 deraadt #endif
238 1.1 deraadt #if (FP_NMANT & 1) != 0
239 1.1 deraadt # define ODD_DOUBLE DOUBLE_X
240 1.1 deraadt # define EVEN_DOUBLE /* nothing */
241 1.1 deraadt #else
242 1.1 deraadt # define ODD_DOUBLE /* nothing */
243 1.1 deraadt # define EVEN_DOUBLE DOUBLE_X
244 1.1 deraadt #endif
245 1.1 deraadt x0 = x->fp_mant[0];
246 1.1 deraadt x1 = x->fp_mant[1];
247 1.1 deraadt x2 = x->fp_mant[2];
248 1.1 deraadt x3 = x->fp_mant[3];
249 1.1 deraadt e = x->fp_exp;
250 1.1 deraadt if (e & 1) /* exponent is odd; use sqrt(2mant) */
251 1.1 deraadt DOUBLE_X;
252 1.1 deraadt /* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
253 1.1 deraadt x->fp_exp = e >> 1; /* calculates (e&1 ? (e-1)/2 : e/2 */
254 1.1 deraadt
255 1.1 deraadt /*
256 1.1 deraadt * Now calculate the mantissa root. Since x is now in [1..4),
257 1.1 deraadt * we know that the first trip around the loop will definitely
258 1.1 deraadt * set the top bit in q, so we can do that manually and start
259 1.1 deraadt * the loop at the next bit down instead. We must be sure to
260 1.1 deraadt * double x correctly while doing the `known q=1.0'.
261 1.1 deraadt *
262 1.1 deraadt * We do this one mantissa-word at a time, as noted above, to
263 1.1 deraadt * save work. To avoid `(1 << 31) << 1', we also do the top bit
264 1.1 deraadt * outside of each per-word loop.
265 1.1 deraadt *
266 1.1 deraadt * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
267 1.1 deraadt * t3 = y3, t? |= bit' for the appropriate word. Since the bit
268 1.1 deraadt * is always a `new' one, this means that three of the `t?'s are
269 1.1 deraadt * just the corresponding `y?'; we use `#define's here for this.
270 1.1 deraadt * The variable `tt' holds the actual `t?' variable.
271 1.1 deraadt */
272 1.1 deraadt
273 1.1 deraadt /* calculate q0 */
274 1.1 deraadt #define t0 tt
275 1.1 deraadt bit = FP_1;
276 1.1 deraadt EVEN_DOUBLE;
277 1.1 deraadt /* if (x >= (t0 = y0 | bit)) { */ /* always true */
278 1.1 deraadt q = bit;
279 1.1 deraadt x0 -= bit;
280 1.1 deraadt y0 = bit << 1;
281 1.1 deraadt /* } */
282 1.1 deraadt ODD_DOUBLE;
283 1.1 deraadt while ((bit >>= 1) != 0) { /* for remaining bits in q0 */
284 1.1 deraadt EVEN_DOUBLE;
285 1.1 deraadt t0 = y0 | bit; /* t = y + bit */
286 1.1 deraadt if (x0 >= t0) { /* if x >= t then */
287 1.1 deraadt x0 -= t0; /* x -= t */
288 1.1 deraadt q |= bit; /* q += bit */
289 1.1 deraadt y0 |= bit << 1; /* y += bit << 1 */
290 1.1 deraadt }
291 1.1 deraadt ODD_DOUBLE;
292 1.1 deraadt }
293 1.1 deraadt x->fp_mant[0] = q;
294 1.1 deraadt #undef t0
295 1.1 deraadt
296 1.1 deraadt /* calculate q1. note (y0&1)==0. */
297 1.1 deraadt #define t0 y0
298 1.1 deraadt #define t1 tt
299 1.1 deraadt q = 0;
300 1.1 deraadt y1 = 0;
301 1.1 deraadt bit = 1 << 31;
302 1.1 deraadt EVEN_DOUBLE;
303 1.1 deraadt t1 = bit;
304 1.1 deraadt FPU_SUBS(d1, x1, t1);
305 1.1 deraadt FPU_SUBC(d0, x0, t0); /* d = x - t */
306 1.1 deraadt if ((int)d0 >= 0) { /* if d >= 0 (i.e., x >= t) then */
307 1.1 deraadt x0 = d0, x1 = d1; /* x -= t */
308 1.1 deraadt q = bit; /* q += bit */
309 1.1 deraadt y0 |= 1; /* y += bit << 1 */
310 1.1 deraadt }
311 1.1 deraadt ODD_DOUBLE;
312 1.1 deraadt while ((bit >>= 1) != 0) { /* for remaining bits in q1 */
313 1.1 deraadt EVEN_DOUBLE; /* as before */
314 1.1 deraadt t1 = y1 | bit;
315 1.1 deraadt FPU_SUBS(d1, x1, t1);
316 1.1 deraadt FPU_SUBC(d0, x0, t0);
317 1.1 deraadt if ((int)d0 >= 0) {
318 1.1 deraadt x0 = d0, x1 = d1;
319 1.1 deraadt q |= bit;
320 1.1 deraadt y1 |= bit << 1;
321 1.1 deraadt }
322 1.1 deraadt ODD_DOUBLE;
323 1.1 deraadt }
324 1.1 deraadt x->fp_mant[1] = q;
325 1.1 deraadt #undef t1
326 1.1 deraadt
327 1.1 deraadt /* calculate q2. note (y1&1)==0; y0 (aka t0) is fixed. */
328 1.1 deraadt #define t1 y1
329 1.1 deraadt #define t2 tt
330 1.1 deraadt q = 0;
331 1.1 deraadt y2 = 0;
332 1.1 deraadt bit = 1 << 31;
333 1.1 deraadt EVEN_DOUBLE;
334 1.1 deraadt t2 = bit;
335 1.1 deraadt FPU_SUBS(d2, x2, t2);
336 1.1 deraadt FPU_SUBCS(d1, x1, t1);
337 1.1 deraadt FPU_SUBC(d0, x0, t0);
338 1.1 deraadt if ((int)d0 >= 0) {
339 1.1 deraadt x0 = d0, x1 = d1, x2 = d2;
340 1.1 deraadt q |= bit;
341 1.1 deraadt y1 |= 1; /* now t1, y1 are set in concrete */
342 1.1 deraadt }
343 1.1 deraadt ODD_DOUBLE;
344 1.1 deraadt while ((bit >>= 1) != 0) {
345 1.1 deraadt EVEN_DOUBLE;
346 1.1 deraadt t2 = y2 | bit;
347 1.1 deraadt FPU_SUBS(d2, x2, t2);
348 1.1 deraadt FPU_SUBCS(d1, x1, t1);
349 1.1 deraadt FPU_SUBC(d0, x0, t0);
350 1.1 deraadt if ((int)d0 >= 0) {
351 1.1 deraadt x0 = d0, x1 = d1, x2 = d2;
352 1.1 deraadt q |= bit;
353 1.1 deraadt y2 |= bit << 1;
354 1.1 deraadt }
355 1.1 deraadt ODD_DOUBLE;
356 1.1 deraadt }
357 1.1 deraadt x->fp_mant[2] = q;
358 1.1 deraadt #undef t2
359 1.1 deraadt
360 1.1 deraadt /* calculate q3. y0, t0, y1, t1 all fixed; y2, t2, almost done. */
361 1.1 deraadt #define t2 y2
362 1.1 deraadt #define t3 tt
363 1.1 deraadt q = 0;
364 1.1 deraadt y3 = 0;
365 1.1 deraadt bit = 1 << 31;
366 1.1 deraadt EVEN_DOUBLE;
367 1.1 deraadt t3 = bit;
368 1.1 deraadt FPU_SUBS(d3, x3, t3);
369 1.1 deraadt FPU_SUBCS(d2, x2, t2);
370 1.1 deraadt FPU_SUBCS(d1, x1, t1);
371 1.1 deraadt FPU_SUBC(d0, x0, t0);
372 1.1 deraadt ODD_DOUBLE;
373 1.1 deraadt if ((int)d0 >= 0) {
374 1.1 deraadt x0 = d0, x1 = d1, x2 = d2;
375 1.1 deraadt q |= bit;
376 1.1 deraadt y2 |= 1;
377 1.1 deraadt }
378 1.1 deraadt while ((bit >>= 1) != 0) {
379 1.1 deraadt EVEN_DOUBLE;
380 1.1 deraadt t3 = y3 | bit;
381 1.1 deraadt FPU_SUBS(d3, x3, t3);
382 1.1 deraadt FPU_SUBCS(d2, x2, t2);
383 1.1 deraadt FPU_SUBCS(d1, x1, t1);
384 1.1 deraadt FPU_SUBC(d0, x0, t0);
385 1.1 deraadt if ((int)d0 >= 0) {
386 1.1 deraadt x0 = d0, x1 = d1, x2 = d2;
387 1.1 deraadt q |= bit;
388 1.1 deraadt y3 |= bit << 1;
389 1.1 deraadt }
390 1.1 deraadt ODD_DOUBLE;
391 1.1 deraadt }
392 1.1 deraadt x->fp_mant[3] = q;
393 1.1 deraadt
394 1.1 deraadt /*
395 1.1 deraadt * The result, which includes guard and round bits, is exact iff
396 1.1 deraadt * x is now zero; any nonzero bits in x represent sticky bits.
397 1.1 deraadt */
398 1.1 deraadt x->fp_sticky = x0 | x1 | x2 | x3;
399 1.1 deraadt return (x);
400 1.1 deraadt }
401