Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.4.16.1
      1  1.4.16.1     yamt /*	$NetBSD: fpu_sqrt.c,v 1.4.16.1 2006/06/21 14:56:11 yamt Exp $ */
      2       1.2  deraadt 
      3       1.1  deraadt /*
      4       1.1  deraadt  * Copyright (c) 1992, 1993
      5       1.1  deraadt  *	The Regents of the University of California.  All rights reserved.
      6       1.1  deraadt  *
      7       1.1  deraadt  * This software was developed by the Computer Systems Engineering group
      8       1.1  deraadt  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9       1.1  deraadt  * contributed to Berkeley.
     10       1.1  deraadt  *
     11       1.1  deraadt  * All advertising materials mentioning features or use of this software
     12       1.1  deraadt  * must display the following acknowledgement:
     13       1.1  deraadt  *	This product includes software developed by the University of
     14       1.1  deraadt  *	California, Lawrence Berkeley Laboratory.
     15       1.1  deraadt  *
     16       1.1  deraadt  * Redistribution and use in source and binary forms, with or without
     17       1.1  deraadt  * modification, are permitted provided that the following conditions
     18       1.1  deraadt  * are met:
     19       1.1  deraadt  * 1. Redistributions of source code must retain the above copyright
     20       1.1  deraadt  *    notice, this list of conditions and the following disclaimer.
     21       1.1  deraadt  * 2. Redistributions in binary form must reproduce the above copyright
     22       1.1  deraadt  *    notice, this list of conditions and the following disclaimer in the
     23       1.1  deraadt  *    documentation and/or other materials provided with the distribution.
     24       1.4      agc  * 3. Neither the name of the University nor the names of its contributors
     25       1.1  deraadt  *    may be used to endorse or promote products derived from this software
     26       1.1  deraadt  *    without specific prior written permission.
     27       1.1  deraadt  *
     28       1.1  deraadt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29       1.1  deraadt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30       1.1  deraadt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31       1.1  deraadt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32       1.1  deraadt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33       1.1  deraadt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34       1.1  deraadt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35       1.1  deraadt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36       1.1  deraadt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37       1.1  deraadt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38       1.1  deraadt  * SUCH DAMAGE.
     39       1.1  deraadt  *
     40       1.1  deraadt  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     41       1.1  deraadt  */
     42       1.1  deraadt 
     43       1.1  deraadt /*
     44       1.1  deraadt  * Perform an FPU square root (return sqrt(x)).
     45       1.1  deraadt  */
     46       1.3    lukem 
     47       1.3    lukem #include <sys/cdefs.h>
     48  1.4.16.1     yamt __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.4.16.1 2006/06/21 14:56:11 yamt Exp $");
     49       1.1  deraadt 
     50       1.1  deraadt #include <sys/types.h>
     51       1.1  deraadt 
     52       1.1  deraadt #include <machine/reg.h>
     53       1.1  deraadt 
     54       1.1  deraadt #include <sparc/fpu/fpu_arith.h>
     55       1.1  deraadt #include <sparc/fpu/fpu_emu.h>
     56       1.1  deraadt 
     57       1.1  deraadt /*
     58       1.1  deraadt  * Our task is to calculate the square root of a floating point number x0.
     59       1.1  deraadt  * This number x normally has the form:
     60       1.1  deraadt  *
     61       1.1  deraadt  *		    exp
     62       1.1  deraadt  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     63       1.1  deraadt  *
     64       1.1  deraadt  * This can be left as it stands, or the mantissa can be doubled and the
     65       1.1  deraadt  * exponent decremented:
     66       1.1  deraadt  *
     67       1.1  deraadt  *			  exp-1
     68       1.1  deraadt  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     69       1.1  deraadt  *
     70       1.1  deraadt  * If the exponent `exp' is even, the square root of the number is best
     71       1.1  deraadt  * handled using the first form, and is by definition equal to:
     72       1.1  deraadt  *
     73       1.1  deraadt  *				exp/2
     74       1.1  deraadt  *	sqrt(x) = sqrt(mant) * 2
     75       1.1  deraadt  *
     76       1.1  deraadt  * If exp is odd, on the other hand, it is convenient to use the second
     77       1.1  deraadt  * form, giving:
     78       1.1  deraadt  *
     79       1.1  deraadt  *				    (exp-1)/2
     80       1.1  deraadt  *	sqrt(x) = sqrt(2 * mant) * 2
     81       1.1  deraadt  *
     82       1.1  deraadt  * In the first case, we have
     83       1.1  deraadt  *
     84       1.1  deraadt  *	1 <= mant < 2
     85       1.1  deraadt  *
     86       1.1  deraadt  * and therefore
     87       1.1  deraadt  *
     88       1.1  deraadt  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     89       1.1  deraadt  *
     90       1.1  deraadt  * while in the second case we have
     91       1.1  deraadt  *
     92       1.1  deraadt  *	2 <= 2*mant < 4
     93       1.1  deraadt  *
     94       1.1  deraadt  * and therefore
     95       1.1  deraadt  *
     96       1.1  deraadt  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
     97       1.1  deraadt  *
     98       1.1  deraadt  * so that in any case, we are sure that
     99       1.1  deraadt  *
    100       1.1  deraadt  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    101       1.1  deraadt  *
    102       1.1  deraadt  * or
    103       1.1  deraadt  *
    104       1.1  deraadt  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    105       1.1  deraadt  *
    106       1.1  deraadt  * This root is therefore a properly formed mantissa for a floating
    107       1.1  deraadt  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    108       1.1  deraadt  * as above.  This leaves us with the problem of finding the square root
    109       1.1  deraadt  * of a fixed-point number in the range [1..4).
    110       1.1  deraadt  *
    111       1.1  deraadt  * Though it may not be instantly obvious, the following square root
    112       1.1  deraadt  * algorithm works for any integer x of an even number of bits, provided
    113       1.1  deraadt  * that no overflows occur:
    114       1.1  deraadt  *
    115       1.1  deraadt  *	let q = 0
    116       1.1  deraadt  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    117       1.1  deraadt  *		x *= 2			-- multiply by radix, for next digit
    118       1.1  deraadt  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    119       1.1  deraadt  *			x -= 2q + 2^k	-- exceed the correct root,
    120       1.1  deraadt  *			q += 2^k	-- add 2^k and adjust x
    121       1.1  deraadt  *		fi
    122       1.1  deraadt  *	done
    123       1.1  deraadt  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    124       1.1  deraadt  *
    125       1.1  deraadt  * If NBITS is odd (so that k is initially even), we can just add another
    126       1.1  deraadt  * zero bit at the top of x.  Doing so means that q is not going to acquire
    127       1.1  deraadt  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    128       1.1  deraadt  * final value in x is not needed, or can be off by a factor of 2, this is
    129       1.1  deraadt  * equivalant to moving the `x *= 2' step to the bottom of the loop:
    130       1.1  deraadt  *
    131       1.1  deraadt  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    132       1.1  deraadt  *
    133       1.1  deraadt  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    134       1.1  deraadt  * (Since the algorithm is destructive on x, we will call x's initial
    135       1.1  deraadt  * value, for which q is some power of two times its square root, x0.)
    136       1.1  deraadt  *
    137       1.1  deraadt  * If we insert a loop invariant y = 2q, we can then rewrite this using
    138       1.1  deraadt  * C notation as:
    139       1.1  deraadt  *
    140       1.1  deraadt  *	q = y = 0; x = x0;
    141       1.1  deraadt  *	for (k = NBITS; --k >= 0;) {
    142       1.1  deraadt  * #if (NBITS is even)
    143       1.1  deraadt  *		x *= 2;
    144       1.1  deraadt  * #endif
    145       1.1  deraadt  *		t = y + (1 << k);
    146       1.1  deraadt  *		if (x >= t) {
    147       1.1  deraadt  *			x -= t;
    148       1.1  deraadt  *			q += 1 << k;
    149       1.1  deraadt  *			y += 1 << (k + 1);
    150       1.1  deraadt  *		}
    151       1.1  deraadt  * #if (NBITS is odd)
    152       1.1  deraadt  *		x *= 2;
    153       1.1  deraadt  * #endif
    154       1.1  deraadt  *	}
    155       1.1  deraadt  *
    156       1.1  deraadt  * If x0 is fixed point, rather than an integer, we can simply alter the
    157       1.1  deraadt  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    158       1.1  deraadt  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    159       1.1  deraadt  *
    160       1.1  deraadt  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    161       1.1  deraadt  * integers, which adds some complication.  But note that q is built one
    162       1.1  deraadt  * bit at a time, from the top down, and is not used itself in the loop
    163       1.1  deraadt  * (we use 2q as held in y instead).  This means we can build our answer
    164       1.1  deraadt  * in an integer, one word at a time, which saves a bit of work.  Also,
    165       1.1  deraadt  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    166       1.1  deraadt  * `new' bits in y and we can set them with an `or' operation rather than
    167       1.1  deraadt  * a full-blown multiword add.
    168       1.1  deraadt  *
    169       1.1  deraadt  * We are almost done, except for one snag.  We must prove that none of our
    170       1.1  deraadt  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    171       1.1  deraadt  * and therefore the square root in q will be in [1..2), but what about x,
    172       1.1  deraadt  * y, and t?
    173       1.1  deraadt  *
    174       1.1  deraadt  * We know that y = 2q at the beginning of each loop.  (The relation only
    175       1.1  deraadt  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    176       1.1  deraadt  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    177       1.1  deraadt  * Furthermore, we can prove with a bit of work that x never exceeds y by
    178       1.1  deraadt  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    179       1.1  deraadt  * an exercise to the reader, mostly because I have become tired of working
    180       1.1  deraadt  * on this comment.)
    181       1.1  deraadt  *
    182       1.1  deraadt  * If our floating point mantissas (which are of the form 1.frac) occupy
    183       1.1  deraadt  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    184       1.1  deraadt  * In fact, we want even one more bit (for a carry, to avoid compares), or
    185       1.1  deraadt  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    186       1.1  deraadt  * this, so we have some justification in assuming it.
    187       1.1  deraadt  */
    188       1.1  deraadt struct fpn *
    189  1.4.16.1     yamt fpu_sqrt(struct fpemu *fe)
    190       1.1  deraadt {
    191       1.1  deraadt 	register struct fpn *x = &fe->fe_f1;
    192       1.1  deraadt 	register u_int bit, q, tt;
    193       1.1  deraadt 	register u_int x0, x1, x2, x3;
    194       1.1  deraadt 	register u_int y0, y1, y2, y3;
    195       1.1  deraadt 	register u_int d0, d1, d2, d3;
    196       1.1  deraadt 	register int e;
    197       1.1  deraadt 
    198       1.1  deraadt 	/*
    199       1.1  deraadt 	 * Take care of special cases first.  In order:
    200       1.1  deraadt 	 *
    201       1.1  deraadt 	 *	sqrt(NaN) = NaN
    202       1.1  deraadt 	 *	sqrt(+0) = +0
    203       1.1  deraadt 	 *	sqrt(-0) = -0
    204       1.1  deraadt 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    205       1.1  deraadt 	 *	sqrt(+Inf) = +Inf
    206       1.1  deraadt 	 *
    207       1.1  deraadt 	 * Then all that remains are numbers with mantissas in [1..2).
    208       1.1  deraadt 	 */
    209       1.1  deraadt 	if (ISNAN(x) || ISZERO(x))
    210       1.1  deraadt 		return (x);
    211       1.1  deraadt 	if (x->fp_sign)
    212       1.1  deraadt 		return (fpu_newnan(fe));
    213       1.1  deraadt 	if (ISINF(x))
    214       1.1  deraadt 		return (x);
    215       1.1  deraadt 
    216       1.1  deraadt 	/*
    217       1.1  deraadt 	 * Calculate result exponent.  As noted above, this may involve
    218       1.1  deraadt 	 * doubling the mantissa.  We will also need to double x each
    219       1.1  deraadt 	 * time around the loop, so we define a macro for this here, and
    220       1.1  deraadt 	 * we break out the multiword mantissa.
    221       1.1  deraadt 	 */
    222       1.1  deraadt #ifdef FPU_SHL1_BY_ADD
    223       1.1  deraadt #define	DOUBLE_X { \
    224       1.1  deraadt 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    225       1.1  deraadt 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    226       1.1  deraadt }
    227       1.1  deraadt #else
    228       1.1  deraadt #define	DOUBLE_X { \
    229       1.1  deraadt 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    230       1.1  deraadt 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    231       1.1  deraadt }
    232       1.1  deraadt #endif
    233       1.1  deraadt #if (FP_NMANT & 1) != 0
    234       1.1  deraadt # define ODD_DOUBLE	DOUBLE_X
    235       1.1  deraadt # define EVEN_DOUBLE	/* nothing */
    236       1.1  deraadt #else
    237       1.1  deraadt # define ODD_DOUBLE	/* nothing */
    238       1.1  deraadt # define EVEN_DOUBLE	DOUBLE_X
    239       1.1  deraadt #endif
    240       1.1  deraadt 	x0 = x->fp_mant[0];
    241       1.1  deraadt 	x1 = x->fp_mant[1];
    242       1.1  deraadt 	x2 = x->fp_mant[2];
    243       1.1  deraadt 	x3 = x->fp_mant[3];
    244       1.1  deraadt 	e = x->fp_exp;
    245       1.1  deraadt 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    246       1.1  deraadt 		DOUBLE_X;
    247       1.1  deraadt 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    248       1.1  deraadt 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    249       1.1  deraadt 
    250       1.1  deraadt 	/*
    251       1.1  deraadt 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    252       1.1  deraadt 	 * we know that the first trip around the loop will definitely
    253       1.1  deraadt 	 * set the top bit in q, so we can do that manually and start
    254       1.1  deraadt 	 * the loop at the next bit down instead.  We must be sure to
    255       1.1  deraadt 	 * double x correctly while doing the `known q=1.0'.
    256       1.1  deraadt 	 *
    257       1.1  deraadt 	 * We do this one mantissa-word at a time, as noted above, to
    258       1.1  deraadt 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    259       1.1  deraadt 	 * outside of each per-word loop.
    260       1.1  deraadt 	 *
    261       1.1  deraadt 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    262       1.1  deraadt 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    263       1.1  deraadt 	 * is always a `new' one, this means that three of the `t?'s are
    264       1.1  deraadt 	 * just the corresponding `y?'; we use `#define's here for this.
    265       1.1  deraadt 	 * The variable `tt' holds the actual `t?' variable.
    266       1.1  deraadt 	 */
    267       1.1  deraadt 
    268       1.1  deraadt 	/* calculate q0 */
    269       1.1  deraadt #define	t0 tt
    270       1.1  deraadt 	bit = FP_1;
    271       1.1  deraadt 	EVEN_DOUBLE;
    272       1.1  deraadt 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    273       1.1  deraadt 		q = bit;
    274       1.1  deraadt 		x0 -= bit;
    275       1.1  deraadt 		y0 = bit << 1;
    276       1.1  deraadt 	/* } */
    277       1.1  deraadt 	ODD_DOUBLE;
    278       1.1  deraadt 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    279       1.1  deraadt 		EVEN_DOUBLE;
    280       1.1  deraadt 		t0 = y0 | bit;		/* t = y + bit */
    281       1.1  deraadt 		if (x0 >= t0) {		/* if x >= t then */
    282       1.1  deraadt 			x0 -= t0;	/*	x -= t */
    283       1.1  deraadt 			q |= bit;	/*	q += bit */
    284       1.1  deraadt 			y0 |= bit << 1;	/*	y += bit << 1 */
    285       1.1  deraadt 		}
    286       1.1  deraadt 		ODD_DOUBLE;
    287       1.1  deraadt 	}
    288       1.1  deraadt 	x->fp_mant[0] = q;
    289       1.1  deraadt #undef t0
    290       1.1  deraadt 
    291       1.1  deraadt 	/* calculate q1.  note (y0&1)==0. */
    292       1.1  deraadt #define t0 y0
    293       1.1  deraadt #define t1 tt
    294       1.1  deraadt 	q = 0;
    295       1.1  deraadt 	y1 = 0;
    296       1.1  deraadt 	bit = 1 << 31;
    297       1.1  deraadt 	EVEN_DOUBLE;
    298       1.1  deraadt 	t1 = bit;
    299       1.1  deraadt 	FPU_SUBS(d1, x1, t1);
    300       1.1  deraadt 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    301       1.1  deraadt 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    302       1.1  deraadt 		x0 = d0, x1 = d1;	/*	x -= t */
    303       1.1  deraadt 		q = bit;		/*	q += bit */
    304       1.1  deraadt 		y0 |= 1;		/*	y += bit << 1 */
    305       1.1  deraadt 	}
    306       1.1  deraadt 	ODD_DOUBLE;
    307       1.1  deraadt 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    308       1.1  deraadt 		EVEN_DOUBLE;		/* as before */
    309       1.1  deraadt 		t1 = y1 | bit;
    310       1.1  deraadt 		FPU_SUBS(d1, x1, t1);
    311       1.1  deraadt 		FPU_SUBC(d0, x0, t0);
    312       1.1  deraadt 		if ((int)d0 >= 0) {
    313       1.1  deraadt 			x0 = d0, x1 = d1;
    314       1.1  deraadt 			q |= bit;
    315       1.1  deraadt 			y1 |= bit << 1;
    316       1.1  deraadt 		}
    317       1.1  deraadt 		ODD_DOUBLE;
    318       1.1  deraadt 	}
    319       1.1  deraadt 	x->fp_mant[1] = q;
    320       1.1  deraadt #undef t1
    321       1.1  deraadt 
    322       1.1  deraadt 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    323       1.1  deraadt #define t1 y1
    324       1.1  deraadt #define t2 tt
    325       1.1  deraadt 	q = 0;
    326       1.1  deraadt 	y2 = 0;
    327       1.1  deraadt 	bit = 1 << 31;
    328       1.1  deraadt 	EVEN_DOUBLE;
    329       1.1  deraadt 	t2 = bit;
    330       1.1  deraadt 	FPU_SUBS(d2, x2, t2);
    331       1.1  deraadt 	FPU_SUBCS(d1, x1, t1);
    332       1.1  deraadt 	FPU_SUBC(d0, x0, t0);
    333       1.1  deraadt 	if ((int)d0 >= 0) {
    334       1.1  deraadt 		x0 = d0, x1 = d1, x2 = d2;
    335       1.1  deraadt 		q |= bit;
    336       1.1  deraadt 		y1 |= 1;		/* now t1, y1 are set in concrete */
    337       1.1  deraadt 	}
    338       1.1  deraadt 	ODD_DOUBLE;
    339       1.1  deraadt 	while ((bit >>= 1) != 0) {
    340       1.1  deraadt 		EVEN_DOUBLE;
    341       1.1  deraadt 		t2 = y2 | bit;
    342       1.1  deraadt 		FPU_SUBS(d2, x2, t2);
    343       1.1  deraadt 		FPU_SUBCS(d1, x1, t1);
    344       1.1  deraadt 		FPU_SUBC(d0, x0, t0);
    345       1.1  deraadt 		if ((int)d0 >= 0) {
    346       1.1  deraadt 			x0 = d0, x1 = d1, x2 = d2;
    347       1.1  deraadt 			q |= bit;
    348       1.1  deraadt 			y2 |= bit << 1;
    349       1.1  deraadt 		}
    350       1.1  deraadt 		ODD_DOUBLE;
    351       1.1  deraadt 	}
    352       1.1  deraadt 	x->fp_mant[2] = q;
    353       1.1  deraadt #undef t2
    354       1.1  deraadt 
    355       1.1  deraadt 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    356       1.1  deraadt #define t2 y2
    357       1.1  deraadt #define t3 tt
    358       1.1  deraadt 	q = 0;
    359       1.1  deraadt 	y3 = 0;
    360       1.1  deraadt 	bit = 1 << 31;
    361       1.1  deraadt 	EVEN_DOUBLE;
    362       1.1  deraadt 	t3 = bit;
    363       1.1  deraadt 	FPU_SUBS(d3, x3, t3);
    364       1.1  deraadt 	FPU_SUBCS(d2, x2, t2);
    365       1.1  deraadt 	FPU_SUBCS(d1, x1, t1);
    366       1.1  deraadt 	FPU_SUBC(d0, x0, t0);
    367       1.1  deraadt 	ODD_DOUBLE;
    368       1.1  deraadt 	if ((int)d0 >= 0) {
    369       1.1  deraadt 		x0 = d0, x1 = d1, x2 = d2;
    370       1.1  deraadt 		q |= bit;
    371       1.1  deraadt 		y2 |= 1;
    372       1.1  deraadt 	}
    373       1.1  deraadt 	while ((bit >>= 1) != 0) {
    374       1.1  deraadt 		EVEN_DOUBLE;
    375       1.1  deraadt 		t3 = y3 | bit;
    376       1.1  deraadt 		FPU_SUBS(d3, x3, t3);
    377       1.1  deraadt 		FPU_SUBCS(d2, x2, t2);
    378       1.1  deraadt 		FPU_SUBCS(d1, x1, t1);
    379       1.1  deraadt 		FPU_SUBC(d0, x0, t0);
    380       1.1  deraadt 		if ((int)d0 >= 0) {
    381       1.1  deraadt 			x0 = d0, x1 = d1, x2 = d2;
    382       1.1  deraadt 			q |= bit;
    383       1.1  deraadt 			y3 |= bit << 1;
    384       1.1  deraadt 		}
    385       1.1  deraadt 		ODD_DOUBLE;
    386       1.1  deraadt 	}
    387       1.1  deraadt 	x->fp_mant[3] = q;
    388       1.1  deraadt 
    389       1.1  deraadt 	/*
    390       1.1  deraadt 	 * The result, which includes guard and round bits, is exact iff
    391       1.1  deraadt 	 * x is now zero; any nonzero bits in x represent sticky bits.
    392       1.1  deraadt 	 */
    393       1.1  deraadt 	x->fp_sticky = x0 | x1 | x2 | x3;
    394       1.1  deraadt 	return (x);
    395       1.1  deraadt }
    396