Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.1
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * All advertising materials mentioning features or use of this software
     10  * must display the following acknowledgement:
     11  *	This product includes software developed by the University of
     12  *	California, Lawrence Berkeley Laboratory.
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  * 3. All advertising materials mentioning features or use of this software
     23  *    must display the following acknowledgement:
     24  *	This product includes software developed by the University of
     25  *	California, Berkeley and its contributors.
     26  * 4. Neither the name of the University nor the names of its contributors
     27  *    may be used to endorse or promote products derived from this software
     28  *    without specific prior written permission.
     29  *
     30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     40  * SUCH DAMAGE.
     41  *
     42  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     43  *
     44  * from: Header: fpu_sqrt.c,v 1.3 92/11/26 01:39:51 torek Exp
     45  * $Id: fpu_sqrt.c,v 1.1 1993/10/02 10:23:00 deraadt Exp $
     46  */
     47 
     48 /*
     49  * Perform an FPU square root (return sqrt(x)).
     50  */
     51 
     52 #include <sys/types.h>
     53 
     54 #include <machine/reg.h>
     55 
     56 #include <sparc/fpu/fpu_arith.h>
     57 #include <sparc/fpu/fpu_emu.h>
     58 
     59 /*
     60  * Our task is to calculate the square root of a floating point number x0.
     61  * This number x normally has the form:
     62  *
     63  *		    exp
     64  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     65  *
     66  * This can be left as it stands, or the mantissa can be doubled and the
     67  * exponent decremented:
     68  *
     69  *			  exp-1
     70  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     71  *
     72  * If the exponent `exp' is even, the square root of the number is best
     73  * handled using the first form, and is by definition equal to:
     74  *
     75  *				exp/2
     76  *	sqrt(x) = sqrt(mant) * 2
     77  *
     78  * If exp is odd, on the other hand, it is convenient to use the second
     79  * form, giving:
     80  *
     81  *				    (exp-1)/2
     82  *	sqrt(x) = sqrt(2 * mant) * 2
     83  *
     84  * In the first case, we have
     85  *
     86  *	1 <= mant < 2
     87  *
     88  * and therefore
     89  *
     90  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     91  *
     92  * while in the second case we have
     93  *
     94  *	2 <= 2*mant < 4
     95  *
     96  * and therefore
     97  *
     98  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
     99  *
    100  * so that in any case, we are sure that
    101  *
    102  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    103  *
    104  * or
    105  *
    106  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    107  *
    108  * This root is therefore a properly formed mantissa for a floating
    109  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    110  * as above.  This leaves us with the problem of finding the square root
    111  * of a fixed-point number in the range [1..4).
    112  *
    113  * Though it may not be instantly obvious, the following square root
    114  * algorithm works for any integer x of an even number of bits, provided
    115  * that no overflows occur:
    116  *
    117  *	let q = 0
    118  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    119  *		x *= 2			-- multiply by radix, for next digit
    120  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    121  *			x -= 2q + 2^k	-- exceed the correct root,
    122  *			q += 2^k	-- add 2^k and adjust x
    123  *		fi
    124  *	done
    125  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    126  *
    127  * If NBITS is odd (so that k is initially even), we can just add another
    128  * zero bit at the top of x.  Doing so means that q is not going to acquire
    129  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    130  * final value in x is not needed, or can be off by a factor of 2, this is
    131  * equivalant to moving the `x *= 2' step to the bottom of the loop:
    132  *
    133  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    134  *
    135  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    136  * (Since the algorithm is destructive on x, we will call x's initial
    137  * value, for which q is some power of two times its square root, x0.)
    138  *
    139  * If we insert a loop invariant y = 2q, we can then rewrite this using
    140  * C notation as:
    141  *
    142  *	q = y = 0; x = x0;
    143  *	for (k = NBITS; --k >= 0;) {
    144  * #if (NBITS is even)
    145  *		x *= 2;
    146  * #endif
    147  *		t = y + (1 << k);
    148  *		if (x >= t) {
    149  *			x -= t;
    150  *			q += 1 << k;
    151  *			y += 1 << (k + 1);
    152  *		}
    153  * #if (NBITS is odd)
    154  *		x *= 2;
    155  * #endif
    156  *	}
    157  *
    158  * If x0 is fixed point, rather than an integer, we can simply alter the
    159  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    160  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    161  *
    162  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    163  * integers, which adds some complication.  But note that q is built one
    164  * bit at a time, from the top down, and is not used itself in the loop
    165  * (we use 2q as held in y instead).  This means we can build our answer
    166  * in an integer, one word at a time, which saves a bit of work.  Also,
    167  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    168  * `new' bits in y and we can set them with an `or' operation rather than
    169  * a full-blown multiword add.
    170  *
    171  * We are almost done, except for one snag.  We must prove that none of our
    172  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    173  * and therefore the square root in q will be in [1..2), but what about x,
    174  * y, and t?
    175  *
    176  * We know that y = 2q at the beginning of each loop.  (The relation only
    177  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    178  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    179  * Furthermore, we can prove with a bit of work that x never exceeds y by
    180  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    181  * an exercise to the reader, mostly because I have become tired of working
    182  * on this comment.)
    183  *
    184  * If our floating point mantissas (which are of the form 1.frac) occupy
    185  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    186  * In fact, we want even one more bit (for a carry, to avoid compares), or
    187  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    188  * this, so we have some justification in assuming it.
    189  */
    190 struct fpn *
    191 fpu_sqrt(fe)
    192 	struct fpemu *fe;
    193 {
    194 	register struct fpn *x = &fe->fe_f1;
    195 	register u_int bit, q, tt;
    196 	register u_int x0, x1, x2, x3;
    197 	register u_int y0, y1, y2, y3;
    198 	register u_int d0, d1, d2, d3;
    199 	register int e;
    200 
    201 	/*
    202 	 * Take care of special cases first.  In order:
    203 	 *
    204 	 *	sqrt(NaN) = NaN
    205 	 *	sqrt(+0) = +0
    206 	 *	sqrt(-0) = -0
    207 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    208 	 *	sqrt(+Inf) = +Inf
    209 	 *
    210 	 * Then all that remains are numbers with mantissas in [1..2).
    211 	 */
    212 	if (ISNAN(x) || ISZERO(x))
    213 		return (x);
    214 	if (x->fp_sign)
    215 		return (fpu_newnan(fe));
    216 	if (ISINF(x))
    217 		return (x);
    218 
    219 	/*
    220 	 * Calculate result exponent.  As noted above, this may involve
    221 	 * doubling the mantissa.  We will also need to double x each
    222 	 * time around the loop, so we define a macro for this here, and
    223 	 * we break out the multiword mantissa.
    224 	 */
    225 #ifdef FPU_SHL1_BY_ADD
    226 #define	DOUBLE_X { \
    227 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    228 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    229 }
    230 #else
    231 #define	DOUBLE_X { \
    232 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    233 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    234 }
    235 #endif
    236 #if (FP_NMANT & 1) != 0
    237 # define ODD_DOUBLE	DOUBLE_X
    238 # define EVEN_DOUBLE	/* nothing */
    239 #else
    240 # define ODD_DOUBLE	/* nothing */
    241 # define EVEN_DOUBLE	DOUBLE_X
    242 #endif
    243 	x0 = x->fp_mant[0];
    244 	x1 = x->fp_mant[1];
    245 	x2 = x->fp_mant[2];
    246 	x3 = x->fp_mant[3];
    247 	e = x->fp_exp;
    248 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    249 		DOUBLE_X;
    250 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    251 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    252 
    253 	/*
    254 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    255 	 * we know that the first trip around the loop will definitely
    256 	 * set the top bit in q, so we can do that manually and start
    257 	 * the loop at the next bit down instead.  We must be sure to
    258 	 * double x correctly while doing the `known q=1.0'.
    259 	 *
    260 	 * We do this one mantissa-word at a time, as noted above, to
    261 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    262 	 * outside of each per-word loop.
    263 	 *
    264 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    265 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    266 	 * is always a `new' one, this means that three of the `t?'s are
    267 	 * just the corresponding `y?'; we use `#define's here for this.
    268 	 * The variable `tt' holds the actual `t?' variable.
    269 	 */
    270 
    271 	/* calculate q0 */
    272 #define	t0 tt
    273 	bit = FP_1;
    274 	EVEN_DOUBLE;
    275 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    276 		q = bit;
    277 		x0 -= bit;
    278 		y0 = bit << 1;
    279 	/* } */
    280 	ODD_DOUBLE;
    281 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    282 		EVEN_DOUBLE;
    283 		t0 = y0 | bit;		/* t = y + bit */
    284 		if (x0 >= t0) {		/* if x >= t then */
    285 			x0 -= t0;	/*	x -= t */
    286 			q |= bit;	/*	q += bit */
    287 			y0 |= bit << 1;	/*	y += bit << 1 */
    288 		}
    289 		ODD_DOUBLE;
    290 	}
    291 	x->fp_mant[0] = q;
    292 #undef t0
    293 
    294 	/* calculate q1.  note (y0&1)==0. */
    295 #define t0 y0
    296 #define t1 tt
    297 	q = 0;
    298 	y1 = 0;
    299 	bit = 1 << 31;
    300 	EVEN_DOUBLE;
    301 	t1 = bit;
    302 	FPU_SUBS(d1, x1, t1);
    303 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    304 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    305 		x0 = d0, x1 = d1;	/*	x -= t */
    306 		q = bit;		/*	q += bit */
    307 		y0 |= 1;		/*	y += bit << 1 */
    308 	}
    309 	ODD_DOUBLE;
    310 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    311 		EVEN_DOUBLE;		/* as before */
    312 		t1 = y1 | bit;
    313 		FPU_SUBS(d1, x1, t1);
    314 		FPU_SUBC(d0, x0, t0);
    315 		if ((int)d0 >= 0) {
    316 			x0 = d0, x1 = d1;
    317 			q |= bit;
    318 			y1 |= bit << 1;
    319 		}
    320 		ODD_DOUBLE;
    321 	}
    322 	x->fp_mant[1] = q;
    323 #undef t1
    324 
    325 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    326 #define t1 y1
    327 #define t2 tt
    328 	q = 0;
    329 	y2 = 0;
    330 	bit = 1 << 31;
    331 	EVEN_DOUBLE;
    332 	t2 = bit;
    333 	FPU_SUBS(d2, x2, t2);
    334 	FPU_SUBCS(d1, x1, t1);
    335 	FPU_SUBC(d0, x0, t0);
    336 	if ((int)d0 >= 0) {
    337 		x0 = d0, x1 = d1, x2 = d2;
    338 		q |= bit;
    339 		y1 |= 1;		/* now t1, y1 are set in concrete */
    340 	}
    341 	ODD_DOUBLE;
    342 	while ((bit >>= 1) != 0) {
    343 		EVEN_DOUBLE;
    344 		t2 = y2 | bit;
    345 		FPU_SUBS(d2, x2, t2);
    346 		FPU_SUBCS(d1, x1, t1);
    347 		FPU_SUBC(d0, x0, t0);
    348 		if ((int)d0 >= 0) {
    349 			x0 = d0, x1 = d1, x2 = d2;
    350 			q |= bit;
    351 			y2 |= bit << 1;
    352 		}
    353 		ODD_DOUBLE;
    354 	}
    355 	x->fp_mant[2] = q;
    356 #undef t2
    357 
    358 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    359 #define t2 y2
    360 #define t3 tt
    361 	q = 0;
    362 	y3 = 0;
    363 	bit = 1 << 31;
    364 	EVEN_DOUBLE;
    365 	t3 = bit;
    366 	FPU_SUBS(d3, x3, t3);
    367 	FPU_SUBCS(d2, x2, t2);
    368 	FPU_SUBCS(d1, x1, t1);
    369 	FPU_SUBC(d0, x0, t0);
    370 	ODD_DOUBLE;
    371 	if ((int)d0 >= 0) {
    372 		x0 = d0, x1 = d1, x2 = d2;
    373 		q |= bit;
    374 		y2 |= 1;
    375 	}
    376 	while ((bit >>= 1) != 0) {
    377 		EVEN_DOUBLE;
    378 		t3 = y3 | bit;
    379 		FPU_SUBS(d3, x3, t3);
    380 		FPU_SUBCS(d2, x2, t2);
    381 		FPU_SUBCS(d1, x1, t1);
    382 		FPU_SUBC(d0, x0, t0);
    383 		if ((int)d0 >= 0) {
    384 			x0 = d0, x1 = d1, x2 = d2;
    385 			q |= bit;
    386 			y3 |= bit << 1;
    387 		}
    388 		ODD_DOUBLE;
    389 	}
    390 	x->fp_mant[3] = q;
    391 
    392 	/*
    393 	 * The result, which includes guard and round bits, is exact iff
    394 	 * x is now zero; any nonzero bits in x represent sticky bits.
    395 	 */
    396 	x->fp_sticky = x0 | x1 | x2 | x3;
    397 	return (x);
    398 }
    399