Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.2
      1 /*	$NetBSD: fpu_sqrt.c,v 1.2 1994/11/20 20:52:46 deraadt Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * Perform an FPU square root (return sqrt(x)).
     49  */
     50 
     51 #include <sys/types.h>
     52 
     53 #include <machine/reg.h>
     54 
     55 #include <sparc/fpu/fpu_arith.h>
     56 #include <sparc/fpu/fpu_emu.h>
     57 
     58 /*
     59  * Our task is to calculate the square root of a floating point number x0.
     60  * This number x normally has the form:
     61  *
     62  *		    exp
     63  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     64  *
     65  * This can be left as it stands, or the mantissa can be doubled and the
     66  * exponent decremented:
     67  *
     68  *			  exp-1
     69  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     70  *
     71  * If the exponent `exp' is even, the square root of the number is best
     72  * handled using the first form, and is by definition equal to:
     73  *
     74  *				exp/2
     75  *	sqrt(x) = sqrt(mant) * 2
     76  *
     77  * If exp is odd, on the other hand, it is convenient to use the second
     78  * form, giving:
     79  *
     80  *				    (exp-1)/2
     81  *	sqrt(x) = sqrt(2 * mant) * 2
     82  *
     83  * In the first case, we have
     84  *
     85  *	1 <= mant < 2
     86  *
     87  * and therefore
     88  *
     89  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     90  *
     91  * while in the second case we have
     92  *
     93  *	2 <= 2*mant < 4
     94  *
     95  * and therefore
     96  *
     97  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
     98  *
     99  * so that in any case, we are sure that
    100  *
    101  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    102  *
    103  * or
    104  *
    105  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    106  *
    107  * This root is therefore a properly formed mantissa for a floating
    108  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    109  * as above.  This leaves us with the problem of finding the square root
    110  * of a fixed-point number in the range [1..4).
    111  *
    112  * Though it may not be instantly obvious, the following square root
    113  * algorithm works for any integer x of an even number of bits, provided
    114  * that no overflows occur:
    115  *
    116  *	let q = 0
    117  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    118  *		x *= 2			-- multiply by radix, for next digit
    119  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    120  *			x -= 2q + 2^k	-- exceed the correct root,
    121  *			q += 2^k	-- add 2^k and adjust x
    122  *		fi
    123  *	done
    124  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    125  *
    126  * If NBITS is odd (so that k is initially even), we can just add another
    127  * zero bit at the top of x.  Doing so means that q is not going to acquire
    128  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    129  * final value in x is not needed, or can be off by a factor of 2, this is
    130  * equivalant to moving the `x *= 2' step to the bottom of the loop:
    131  *
    132  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    133  *
    134  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    135  * (Since the algorithm is destructive on x, we will call x's initial
    136  * value, for which q is some power of two times its square root, x0.)
    137  *
    138  * If we insert a loop invariant y = 2q, we can then rewrite this using
    139  * C notation as:
    140  *
    141  *	q = y = 0; x = x0;
    142  *	for (k = NBITS; --k >= 0;) {
    143  * #if (NBITS is even)
    144  *		x *= 2;
    145  * #endif
    146  *		t = y + (1 << k);
    147  *		if (x >= t) {
    148  *			x -= t;
    149  *			q += 1 << k;
    150  *			y += 1 << (k + 1);
    151  *		}
    152  * #if (NBITS is odd)
    153  *		x *= 2;
    154  * #endif
    155  *	}
    156  *
    157  * If x0 is fixed point, rather than an integer, we can simply alter the
    158  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    159  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    160  *
    161  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    162  * integers, which adds some complication.  But note that q is built one
    163  * bit at a time, from the top down, and is not used itself in the loop
    164  * (we use 2q as held in y instead).  This means we can build our answer
    165  * in an integer, one word at a time, which saves a bit of work.  Also,
    166  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    167  * `new' bits in y and we can set them with an `or' operation rather than
    168  * a full-blown multiword add.
    169  *
    170  * We are almost done, except for one snag.  We must prove that none of our
    171  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    172  * and therefore the square root in q will be in [1..2), but what about x,
    173  * y, and t?
    174  *
    175  * We know that y = 2q at the beginning of each loop.  (The relation only
    176  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    177  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    178  * Furthermore, we can prove with a bit of work that x never exceeds y by
    179  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    180  * an exercise to the reader, mostly because I have become tired of working
    181  * on this comment.)
    182  *
    183  * If our floating point mantissas (which are of the form 1.frac) occupy
    184  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    185  * In fact, we want even one more bit (for a carry, to avoid compares), or
    186  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    187  * this, so we have some justification in assuming it.
    188  */
    189 struct fpn *
    190 fpu_sqrt(fe)
    191 	struct fpemu *fe;
    192 {
    193 	register struct fpn *x = &fe->fe_f1;
    194 	register u_int bit, q, tt;
    195 	register u_int x0, x1, x2, x3;
    196 	register u_int y0, y1, y2, y3;
    197 	register u_int d0, d1, d2, d3;
    198 	register int e;
    199 
    200 	/*
    201 	 * Take care of special cases first.  In order:
    202 	 *
    203 	 *	sqrt(NaN) = NaN
    204 	 *	sqrt(+0) = +0
    205 	 *	sqrt(-0) = -0
    206 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    207 	 *	sqrt(+Inf) = +Inf
    208 	 *
    209 	 * Then all that remains are numbers with mantissas in [1..2).
    210 	 */
    211 	if (ISNAN(x) || ISZERO(x))
    212 		return (x);
    213 	if (x->fp_sign)
    214 		return (fpu_newnan(fe));
    215 	if (ISINF(x))
    216 		return (x);
    217 
    218 	/*
    219 	 * Calculate result exponent.  As noted above, this may involve
    220 	 * doubling the mantissa.  We will also need to double x each
    221 	 * time around the loop, so we define a macro for this here, and
    222 	 * we break out the multiword mantissa.
    223 	 */
    224 #ifdef FPU_SHL1_BY_ADD
    225 #define	DOUBLE_X { \
    226 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    227 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    228 }
    229 #else
    230 #define	DOUBLE_X { \
    231 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    232 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    233 }
    234 #endif
    235 #if (FP_NMANT & 1) != 0
    236 # define ODD_DOUBLE	DOUBLE_X
    237 # define EVEN_DOUBLE	/* nothing */
    238 #else
    239 # define ODD_DOUBLE	/* nothing */
    240 # define EVEN_DOUBLE	DOUBLE_X
    241 #endif
    242 	x0 = x->fp_mant[0];
    243 	x1 = x->fp_mant[1];
    244 	x2 = x->fp_mant[2];
    245 	x3 = x->fp_mant[3];
    246 	e = x->fp_exp;
    247 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    248 		DOUBLE_X;
    249 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    250 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    251 
    252 	/*
    253 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    254 	 * we know that the first trip around the loop will definitely
    255 	 * set the top bit in q, so we can do that manually and start
    256 	 * the loop at the next bit down instead.  We must be sure to
    257 	 * double x correctly while doing the `known q=1.0'.
    258 	 *
    259 	 * We do this one mantissa-word at a time, as noted above, to
    260 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    261 	 * outside of each per-word loop.
    262 	 *
    263 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    264 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    265 	 * is always a `new' one, this means that three of the `t?'s are
    266 	 * just the corresponding `y?'; we use `#define's here for this.
    267 	 * The variable `tt' holds the actual `t?' variable.
    268 	 */
    269 
    270 	/* calculate q0 */
    271 #define	t0 tt
    272 	bit = FP_1;
    273 	EVEN_DOUBLE;
    274 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    275 		q = bit;
    276 		x0 -= bit;
    277 		y0 = bit << 1;
    278 	/* } */
    279 	ODD_DOUBLE;
    280 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    281 		EVEN_DOUBLE;
    282 		t0 = y0 | bit;		/* t = y + bit */
    283 		if (x0 >= t0) {		/* if x >= t then */
    284 			x0 -= t0;	/*	x -= t */
    285 			q |= bit;	/*	q += bit */
    286 			y0 |= bit << 1;	/*	y += bit << 1 */
    287 		}
    288 		ODD_DOUBLE;
    289 	}
    290 	x->fp_mant[0] = q;
    291 #undef t0
    292 
    293 	/* calculate q1.  note (y0&1)==0. */
    294 #define t0 y0
    295 #define t1 tt
    296 	q = 0;
    297 	y1 = 0;
    298 	bit = 1 << 31;
    299 	EVEN_DOUBLE;
    300 	t1 = bit;
    301 	FPU_SUBS(d1, x1, t1);
    302 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    303 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    304 		x0 = d0, x1 = d1;	/*	x -= t */
    305 		q = bit;		/*	q += bit */
    306 		y0 |= 1;		/*	y += bit << 1 */
    307 	}
    308 	ODD_DOUBLE;
    309 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    310 		EVEN_DOUBLE;		/* as before */
    311 		t1 = y1 | bit;
    312 		FPU_SUBS(d1, x1, t1);
    313 		FPU_SUBC(d0, x0, t0);
    314 		if ((int)d0 >= 0) {
    315 			x0 = d0, x1 = d1;
    316 			q |= bit;
    317 			y1 |= bit << 1;
    318 		}
    319 		ODD_DOUBLE;
    320 	}
    321 	x->fp_mant[1] = q;
    322 #undef t1
    323 
    324 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    325 #define t1 y1
    326 #define t2 tt
    327 	q = 0;
    328 	y2 = 0;
    329 	bit = 1 << 31;
    330 	EVEN_DOUBLE;
    331 	t2 = bit;
    332 	FPU_SUBS(d2, x2, t2);
    333 	FPU_SUBCS(d1, x1, t1);
    334 	FPU_SUBC(d0, x0, t0);
    335 	if ((int)d0 >= 0) {
    336 		x0 = d0, x1 = d1, x2 = d2;
    337 		q |= bit;
    338 		y1 |= 1;		/* now t1, y1 are set in concrete */
    339 	}
    340 	ODD_DOUBLE;
    341 	while ((bit >>= 1) != 0) {
    342 		EVEN_DOUBLE;
    343 		t2 = y2 | bit;
    344 		FPU_SUBS(d2, x2, t2);
    345 		FPU_SUBCS(d1, x1, t1);
    346 		FPU_SUBC(d0, x0, t0);
    347 		if ((int)d0 >= 0) {
    348 			x0 = d0, x1 = d1, x2 = d2;
    349 			q |= bit;
    350 			y2 |= bit << 1;
    351 		}
    352 		ODD_DOUBLE;
    353 	}
    354 	x->fp_mant[2] = q;
    355 #undef t2
    356 
    357 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    358 #define t2 y2
    359 #define t3 tt
    360 	q = 0;
    361 	y3 = 0;
    362 	bit = 1 << 31;
    363 	EVEN_DOUBLE;
    364 	t3 = bit;
    365 	FPU_SUBS(d3, x3, t3);
    366 	FPU_SUBCS(d2, x2, t2);
    367 	FPU_SUBCS(d1, x1, t1);
    368 	FPU_SUBC(d0, x0, t0);
    369 	ODD_DOUBLE;
    370 	if ((int)d0 >= 0) {
    371 		x0 = d0, x1 = d1, x2 = d2;
    372 		q |= bit;
    373 		y2 |= 1;
    374 	}
    375 	while ((bit >>= 1) != 0) {
    376 		EVEN_DOUBLE;
    377 		t3 = y3 | bit;
    378 		FPU_SUBS(d3, x3, t3);
    379 		FPU_SUBCS(d2, x2, t2);
    380 		FPU_SUBCS(d1, x1, t1);
    381 		FPU_SUBC(d0, x0, t0);
    382 		if ((int)d0 >= 0) {
    383 			x0 = d0, x1 = d1, x2 = d2;
    384 			q |= bit;
    385 			y3 |= bit << 1;
    386 		}
    387 		ODD_DOUBLE;
    388 	}
    389 	x->fp_mant[3] = q;
    390 
    391 	/*
    392 	 * The result, which includes guard and round bits, is exact iff
    393 	 * x is now zero; any nonzero bits in x represent sticky bits.
    394 	 */
    395 	x->fp_sticky = x0 | x1 | x2 | x3;
    396 	return (x);
    397 }
    398