Home | History | Annotate | Line # | Download | only in fpu
fpu_sqrt.c revision 1.5
      1 /*	$NetBSD: fpu_sqrt.c,v 1.5 2005/11/16 23:24:44 uwe Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_sqrt.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * Perform an FPU square root (return sqrt(x)).
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: fpu_sqrt.c,v 1.5 2005/11/16 23:24:44 uwe Exp $");
     49 
     50 #include <sys/types.h>
     51 
     52 #include <machine/reg.h>
     53 
     54 #include <sparc/fpu/fpu_arith.h>
     55 #include <sparc/fpu/fpu_emu.h>
     56 
     57 /*
     58  * Our task is to calculate the square root of a floating point number x0.
     59  * This number x normally has the form:
     60  *
     61  *		    exp
     62  *	x = mant * 2		(where 1 <= mant < 2 and exp is an integer)
     63  *
     64  * This can be left as it stands, or the mantissa can be doubled and the
     65  * exponent decremented:
     66  *
     67  *			  exp-1
     68  *	x = (2 * mant) * 2	(where 2 <= 2 * mant < 4)
     69  *
     70  * If the exponent `exp' is even, the square root of the number is best
     71  * handled using the first form, and is by definition equal to:
     72  *
     73  *				exp/2
     74  *	sqrt(x) = sqrt(mant) * 2
     75  *
     76  * If exp is odd, on the other hand, it is convenient to use the second
     77  * form, giving:
     78  *
     79  *				    (exp-1)/2
     80  *	sqrt(x) = sqrt(2 * mant) * 2
     81  *
     82  * In the first case, we have
     83  *
     84  *	1 <= mant < 2
     85  *
     86  * and therefore
     87  *
     88  *	sqrt(1) <= sqrt(mant) < sqrt(2)
     89  *
     90  * while in the second case we have
     91  *
     92  *	2 <= 2*mant < 4
     93  *
     94  * and therefore
     95  *
     96  *	sqrt(2) <= sqrt(2*mant) < sqrt(4)
     97  *
     98  * so that in any case, we are sure that
     99  *
    100  *	sqrt(1) <= sqrt(n * mant) < sqrt(4),	n = 1 or 2
    101  *
    102  * or
    103  *
    104  *	1 <= sqrt(n * mant) < 2,		n = 1 or 2.
    105  *
    106  * This root is therefore a properly formed mantissa for a floating
    107  * point number.  The exponent of sqrt(x) is either exp/2 or (exp-1)/2
    108  * as above.  This leaves us with the problem of finding the square root
    109  * of a fixed-point number in the range [1..4).
    110  *
    111  * Though it may not be instantly obvious, the following square root
    112  * algorithm works for any integer x of an even number of bits, provided
    113  * that no overflows occur:
    114  *
    115  *	let q = 0
    116  *	for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
    117  *		x *= 2			-- multiply by radix, for next digit
    118  *		if x >= 2q + 2^k then	-- if adding 2^k does not
    119  *			x -= 2q + 2^k	-- exceed the correct root,
    120  *			q += 2^k	-- add 2^k and adjust x
    121  *		fi
    122  *	done
    123  *	sqrt = q / 2^(NBITS/2)		-- (and any remainder is in x)
    124  *
    125  * If NBITS is odd (so that k is initially even), we can just add another
    126  * zero bit at the top of x.  Doing so means that q is not going to acquire
    127  * a 1 bit in the first trip around the loop (since x0 < 2^NBITS).  If the
    128  * final value in x is not needed, or can be off by a factor of 2, this is
    129  * equivalant to moving the `x *= 2' step to the bottom of the loop:
    130  *
    131  *	for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
    132  *
    133  * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
    134  * (Since the algorithm is destructive on x, we will call x's initial
    135  * value, for which q is some power of two times its square root, x0.)
    136  *
    137  * If we insert a loop invariant y = 2q, we can then rewrite this using
    138  * C notation as:
    139  *
    140  *	q = y = 0; x = x0;
    141  *	for (k = NBITS; --k >= 0;) {
    142  * #if (NBITS is even)
    143  *		x *= 2;
    144  * #endif
    145  *		t = y + (1 << k);
    146  *		if (x >= t) {
    147  *			x -= t;
    148  *			q += 1 << k;
    149  *			y += 1 << (k + 1);
    150  *		}
    151  * #if (NBITS is odd)
    152  *		x *= 2;
    153  * #endif
    154  *	}
    155  *
    156  * If x0 is fixed point, rather than an integer, we can simply alter the
    157  * scale factor between q and sqrt(x0).  As it happens, we can easily arrange
    158  * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
    159  *
    160  * In our case, however, x0 (and therefore x, y, q, and t) are multiword
    161  * integers, which adds some complication.  But note that q is built one
    162  * bit at a time, from the top down, and is not used itself in the loop
    163  * (we use 2q as held in y instead).  This means we can build our answer
    164  * in an integer, one word at a time, which saves a bit of work.  Also,
    165  * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
    166  * `new' bits in y and we can set them with an `or' operation rather than
    167  * a full-blown multiword add.
    168  *
    169  * We are almost done, except for one snag.  We must prove that none of our
    170  * intermediate calculations can overflow.  We know that x0 is in [1..4)
    171  * and therefore the square root in q will be in [1..2), but what about x,
    172  * y, and t?
    173  *
    174  * We know that y = 2q at the beginning of each loop.  (The relation only
    175  * fails temporarily while y and q are being updated.)  Since q < 2, y < 4.
    176  * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
    177  * Furthermore, we can prove with a bit of work that x never exceeds y by
    178  * more than 2, so that even after doubling, 0 <= x < 8.  (This is left as
    179  * an exercise to the reader, mostly because I have become tired of working
    180  * on this comment.)
    181  *
    182  * If our floating point mantissas (which are of the form 1.frac) occupy
    183  * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
    184  * In fact, we want even one more bit (for a carry, to avoid compares), or
    185  * three extra.  There is a comment in fpu_emu.h reminding maintainers of
    186  * this, so we have some justification in assuming it.
    187  */
    188 struct fpn *
    189 fpu_sqrt(struct fpemu *fe)
    190 {
    191 	register struct fpn *x = &fe->fe_f1;
    192 	register u_int bit, q, tt;
    193 	register u_int x0, x1, x2, x3;
    194 	register u_int y0, y1, y2, y3;
    195 	register u_int d0, d1, d2, d3;
    196 	register int e;
    197 
    198 	/*
    199 	 * Take care of special cases first.  In order:
    200 	 *
    201 	 *	sqrt(NaN) = NaN
    202 	 *	sqrt(+0) = +0
    203 	 *	sqrt(-0) = -0
    204 	 *	sqrt(x < 0) = NaN	(including sqrt(-Inf))
    205 	 *	sqrt(+Inf) = +Inf
    206 	 *
    207 	 * Then all that remains are numbers with mantissas in [1..2).
    208 	 */
    209 	if (ISNAN(x) || ISZERO(x))
    210 		return (x);
    211 	if (x->fp_sign)
    212 		return (fpu_newnan(fe));
    213 	if (ISINF(x))
    214 		return (x);
    215 
    216 	/*
    217 	 * Calculate result exponent.  As noted above, this may involve
    218 	 * doubling the mantissa.  We will also need to double x each
    219 	 * time around the loop, so we define a macro for this here, and
    220 	 * we break out the multiword mantissa.
    221 	 */
    222 #ifdef FPU_SHL1_BY_ADD
    223 #define	DOUBLE_X { \
    224 	FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
    225 	FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
    226 }
    227 #else
    228 #define	DOUBLE_X { \
    229 	x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
    230 	x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
    231 }
    232 #endif
    233 #if (FP_NMANT & 1) != 0
    234 # define ODD_DOUBLE	DOUBLE_X
    235 # define EVEN_DOUBLE	/* nothing */
    236 #else
    237 # define ODD_DOUBLE	/* nothing */
    238 # define EVEN_DOUBLE	DOUBLE_X
    239 #endif
    240 	x0 = x->fp_mant[0];
    241 	x1 = x->fp_mant[1];
    242 	x2 = x->fp_mant[2];
    243 	x3 = x->fp_mant[3];
    244 	e = x->fp_exp;
    245 	if (e & 1)		/* exponent is odd; use sqrt(2mant) */
    246 		DOUBLE_X;
    247 	/* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
    248 	x->fp_exp = e >> 1;	/* calculates (e&1 ? (e-1)/2 : e/2 */
    249 
    250 	/*
    251 	 * Now calculate the mantissa root.  Since x is now in [1..4),
    252 	 * we know that the first trip around the loop will definitely
    253 	 * set the top bit in q, so we can do that manually and start
    254 	 * the loop at the next bit down instead.  We must be sure to
    255 	 * double x correctly while doing the `known q=1.0'.
    256 	 *
    257 	 * We do this one mantissa-word at a time, as noted above, to
    258 	 * save work.  To avoid `(1 << 31) << 1', we also do the top bit
    259 	 * outside of each per-word loop.
    260 	 *
    261 	 * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
    262 	 * t3 = y3, t? |= bit' for the appropriate word.  Since the bit
    263 	 * is always a `new' one, this means that three of the `t?'s are
    264 	 * just the corresponding `y?'; we use `#define's here for this.
    265 	 * The variable `tt' holds the actual `t?' variable.
    266 	 */
    267 
    268 	/* calculate q0 */
    269 #define	t0 tt
    270 	bit = FP_1;
    271 	EVEN_DOUBLE;
    272 	/* if (x >= (t0 = y0 | bit)) { */	/* always true */
    273 		q = bit;
    274 		x0 -= bit;
    275 		y0 = bit << 1;
    276 	/* } */
    277 	ODD_DOUBLE;
    278 	while ((bit >>= 1) != 0) {	/* for remaining bits in q0 */
    279 		EVEN_DOUBLE;
    280 		t0 = y0 | bit;		/* t = y + bit */
    281 		if (x0 >= t0) {		/* if x >= t then */
    282 			x0 -= t0;	/*	x -= t */
    283 			q |= bit;	/*	q += bit */
    284 			y0 |= bit << 1;	/*	y += bit << 1 */
    285 		}
    286 		ODD_DOUBLE;
    287 	}
    288 	x->fp_mant[0] = q;
    289 #undef t0
    290 
    291 	/* calculate q1.  note (y0&1)==0. */
    292 #define t0 y0
    293 #define t1 tt
    294 	q = 0;
    295 	y1 = 0;
    296 	bit = 1 << 31;
    297 	EVEN_DOUBLE;
    298 	t1 = bit;
    299 	FPU_SUBS(d1, x1, t1);
    300 	FPU_SUBC(d0, x0, t0);		/* d = x - t */
    301 	if ((int)d0 >= 0) {		/* if d >= 0 (i.e., x >= t) then */
    302 		x0 = d0, x1 = d1;	/*	x -= t */
    303 		q = bit;		/*	q += bit */
    304 		y0 |= 1;		/*	y += bit << 1 */
    305 	}
    306 	ODD_DOUBLE;
    307 	while ((bit >>= 1) != 0) {	/* for remaining bits in q1 */
    308 		EVEN_DOUBLE;		/* as before */
    309 		t1 = y1 | bit;
    310 		FPU_SUBS(d1, x1, t1);
    311 		FPU_SUBC(d0, x0, t0);
    312 		if ((int)d0 >= 0) {
    313 			x0 = d0, x1 = d1;
    314 			q |= bit;
    315 			y1 |= bit << 1;
    316 		}
    317 		ODD_DOUBLE;
    318 	}
    319 	x->fp_mant[1] = q;
    320 #undef t1
    321 
    322 	/* calculate q2.  note (y1&1)==0; y0 (aka t0) is fixed. */
    323 #define t1 y1
    324 #define t2 tt
    325 	q = 0;
    326 	y2 = 0;
    327 	bit = 1 << 31;
    328 	EVEN_DOUBLE;
    329 	t2 = bit;
    330 	FPU_SUBS(d2, x2, t2);
    331 	FPU_SUBCS(d1, x1, t1);
    332 	FPU_SUBC(d0, x0, t0);
    333 	if ((int)d0 >= 0) {
    334 		x0 = d0, x1 = d1, x2 = d2;
    335 		q |= bit;
    336 		y1 |= 1;		/* now t1, y1 are set in concrete */
    337 	}
    338 	ODD_DOUBLE;
    339 	while ((bit >>= 1) != 0) {
    340 		EVEN_DOUBLE;
    341 		t2 = y2 | bit;
    342 		FPU_SUBS(d2, x2, t2);
    343 		FPU_SUBCS(d1, x1, t1);
    344 		FPU_SUBC(d0, x0, t0);
    345 		if ((int)d0 >= 0) {
    346 			x0 = d0, x1 = d1, x2 = d2;
    347 			q |= bit;
    348 			y2 |= bit << 1;
    349 		}
    350 		ODD_DOUBLE;
    351 	}
    352 	x->fp_mant[2] = q;
    353 #undef t2
    354 
    355 	/* calculate q3.  y0, t0, y1, t1 all fixed; y2, t2, almost done. */
    356 #define t2 y2
    357 #define t3 tt
    358 	q = 0;
    359 	y3 = 0;
    360 	bit = 1 << 31;
    361 	EVEN_DOUBLE;
    362 	t3 = bit;
    363 	FPU_SUBS(d3, x3, t3);
    364 	FPU_SUBCS(d2, x2, t2);
    365 	FPU_SUBCS(d1, x1, t1);
    366 	FPU_SUBC(d0, x0, t0);
    367 	ODD_DOUBLE;
    368 	if ((int)d0 >= 0) {
    369 		x0 = d0, x1 = d1, x2 = d2;
    370 		q |= bit;
    371 		y2 |= 1;
    372 	}
    373 	while ((bit >>= 1) != 0) {
    374 		EVEN_DOUBLE;
    375 		t3 = y3 | bit;
    376 		FPU_SUBS(d3, x3, t3);
    377 		FPU_SUBCS(d2, x2, t2);
    378 		FPU_SUBCS(d1, x1, t1);
    379 		FPU_SUBC(d0, x0, t0);
    380 		if ((int)d0 >= 0) {
    381 			x0 = d0, x1 = d1, x2 = d2;
    382 			q |= bit;
    383 			y3 |= bit << 1;
    384 		}
    385 		ODD_DOUBLE;
    386 	}
    387 	x->fp_mant[3] = q;
    388 
    389 	/*
    390 	 * The result, which includes guard and round bits, is exact iff
    391 	 * x is now zero; any nonzero bits in x represent sticky bits.
    392 	 */
    393 	x->fp_sticky = x0 | x1 | x2 | x3;
    394 	return (x);
    395 }
    396