bsd_openprom.h revision 1.13 1 /* $NetBSD: bsd_openprom.h,v 1.13 1998/09/26 18:20:19 pk Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)bsd_openprom.h 8.1 (Berkeley) 6/11/93
39 */
40
41 /*
42 * Sun4m support by Aaron Brown, Harvard University.
43 * Changes Copyright (c) 1995 The President and Fellows of Harvard College.
44 * All rights reserved.
45 */
46
47 #ifndef _BSD_OPENPROM_H_
48 #define _BSD_OPENPROM_H_
49
50 /*
51 * This file defines the interface between the kernel and the Openboot PROM.
52 * N.B.: this has been tested only on interface versions 0 and 2 (we have
53 * never seen interface version 1).
54 */
55
56 /*
57 * The v0 interface tells us what virtual memory to scan to avoid PMEG
58 * conflicts, but the v2 interface fails to do so, and we must `magically'
59 * know where the OPENPROM lives in virtual space.
60 */
61 #define OPENPROM_STARTVADDR 0xffd00000
62 #define OPENPROM_ENDVADDR 0xfff00000
63
64 #define OPENPROM_MAGIC 0x10010407
65
66 /*
67 * Version 0 PROM vector device operations (collected here to emphasise that
68 * they are deprecated). Open and close are obvious. Read and write are
69 * segregated according to the device type (block, network, or character);
70 * this is unnecessary and was eliminated from the v2 device operations, but
71 * we are stuck with it.
72 *
73 * Seek is probably only useful on tape devices, since the only character
74 * devices are the serial ports.
75 *
76 * Note that a v0 device name is always exactly two characters ("sd", "le",
77 * and so forth).
78 */
79 struct v0devops {
80 int (*v0_open) __P((char *dev));
81 int (*v0_close) __P((int d));
82 int (*v0_rbdev) __P((int d, int nblks, int blkno, void *addr));
83 int (*v0_wbdev) __P((int d, int nblks, int blkno, void *addr));
84 int (*v0_wnet) __P((int d, int nbytes, void *addr));
85 int (*v0_rnet) __P((int d, int nbytes, void *addr));
86 int (*v0_rcdev) __P((int d, int nbytes, int, void *addr));
87 int (*v0_wcdev) __P((int d, int nbytes, int, void *addr));
88 int (*v0_seek) __P((int d, long offset, int whence));
89 };
90
91 /*
92 * Version 2 device operations. Open takes a device `path' such as
93 * /sbus/le@0,c00000,0 or /sbus/esp@.../sd@0,0, which means it can open
94 * anything anywhere, without any magic translation.
95 *
96 * The memory allocator and map functions are included here even though
97 * they relate only indirectly to devices (e.g., mmap is good for mapping
98 * device memory, and drivers need to allocate space in which to record
99 * the device state).
100 */
101 struct v2devops {
102 /*
103 * Convert an `instance handle' (acquired through v2_open()) to
104 * a `package handle', a.k.a. a `node'.
105 */
106 int (*v2_fd_phandle) __P((int d));
107
108 /* Memory allocation and release. */
109 void *(*v2_malloc) __P((caddr_t va, u_int sz));
110 void (*v2_free) __P((caddr_t va, u_int sz));
111
112 /* Device memory mapper. */
113 caddr_t (*v2_mmap) __P((caddr_t va, int asi, u_int pa, u_int sz));
114 void (*v2_munmap) __P((caddr_t va, u_int sz));
115
116 /* Device open, close, etc. */
117 int (*v2_open) __P((char *devpath));
118 void (*v2_close) __P((int d));
119 int (*v2_read) __P((int d, void *buf, int nbytes));
120 int (*v2_write) __P((int d, void *buf, int nbytes));
121 void (*v2_seek) __P((int d, int hi, int lo));
122
123 void (*v2_chain) __P((void)); /* ??? */
124 void (*v2_release) __P((void)); /* ??? */
125 };
126
127 /*
128 * The v0 interface describes memory regions with these linked lists.
129 * (The !$&@#+ v2 interface reformats these as properties, so that we
130 * have to extract them into local temporary memory and reinterpret them.)
131 */
132 struct v0mlist {
133 struct v0mlist *next;
134 caddr_t addr;
135 u_int nbytes;
136 };
137
138 /*
139 * V0 gives us three memory lists: Total physical memory, VM reserved to
140 * the PROM, and available physical memory (which, presumably, is just the
141 * total minus any pages mapped in the PROM's VM region). We can find the
142 * reserved PMEGs by scanning the taken VM. Unfortunately, the V2 prom
143 * forgot to provide taken VM, and we are stuck with scanning ``magic''
144 * addresses.
145 */
146 struct v0mem {
147 struct v0mlist **v0_phystot; /* physical memory */
148 struct v0mlist **v0_vmprom; /* VM used by PROM */
149 struct v0mlist **v0_physavail; /* available physical memory */
150 };
151
152 /*
153 * The version 0 PROM breaks up the string given to the boot command and
154 * leaves the decoded version behind.
155 */
156 struct v0bootargs {
157 char *ba_argv[8]; /* argv format for boot string */
158 char ba_args[100]; /* string space */
159 char ba_bootdev[2]; /* e.g., "sd" for `b sd(...' */
160 int ba_ctlr; /* controller # */
161 int ba_unit; /* unit # */
162 int ba_part; /* partition # */
163 char *ba_kernel; /* kernel to boot, e.g., "vmunix" */
164 void *ba_spare0; /* not decoded here XXX */
165 };
166
167 /*
168 * The version 2 PROM interface uses the more general, if less convenient,
169 * approach of passing the boot strings unchanged. We also get open file
170 * numbers for stdin and stdout (keyboard and screen, or whatever), for use
171 * with the v2 device ops.
172 */
173 struct v2bootargs {
174 char **v2_bootpath; /* V2: Path to boot device */
175 char **v2_bootargs; /* V2: Boot args */
176 int *v2_fd0; /* V2: Stdin descriptor */
177 int *v2_fd1; /* V2: Stdout descriptor */
178 };
179
180 /*
181 * The format used by the PROM to describe a physical address.
182 */
183 struct openprom_addr {
184 int oa_space; /* address space (may be relative) */
185 u_int oa_base; /* address within space */
186 u_int oa_size; /* extent (number of bytes) */
187 };
188
189 /*
190 * The following structure defines the primary PROM vector interface.
191 * The Boot PROM hands the kernel a pointer to this structure in %o0.
192 * There are numerous substructures defined below.
193 */
194 struct promvec {
195 /* Version numbers. */
196 u_int pv_magic; /* Magic number */
197 u_int pv_romvec_vers; /* interface version (0, 2) */
198 u_int pv_plugin_vers; /* ??? */
199 u_int pv_printrev; /* PROM rev # (* 10, e.g 1.9 = 19) */
200
201 /* Version 0 memory descriptors (see below). */
202 struct v0mem pv_v0mem; /* V0: Memory description lists. */
203
204 /* Node operations (see below). */
205 struct nodeops *pv_nodeops; /* node functions */
206
207 char **pv_bootstr; /* Boot command, eg sd(0,0,0)vmunix */
208
209 struct v0devops pv_v0devops; /* V0: device ops */
210
211 /*
212 * PROMDEV_* cookies. I fear these may vanish in lieu of fd0/fd1
213 * (see below) in future PROMs, but for now they work fine.
214 */
215 char *pv_stdin; /* stdin cookie */
216 char *pv_stdout; /* stdout cookie */
217 #define PROMDEV_KBD 0 /* input from keyboard */
218 #define PROMDEV_SCREEN 0 /* output to screen */
219 #define PROMDEV_TTYA 1 /* in/out to ttya */
220 #define PROMDEV_TTYB 2 /* in/out to ttyb */
221
222 /* Blocking getchar/putchar. NOT REENTRANT! (grr) */
223 int (*pv_getchar) __P((void));
224 void (*pv_putchar) __P((int ch));
225
226 /* Non-blocking variants that return -1 on error. */
227 int (*pv_nbgetchar) __P((void));
228 int (*pv_nbputchar) __P((int ch));
229
230 /* Put counted string (can be very slow). */
231 void (*pv_putstr) __P((char *str, int len));
232
233 /* Miscellany. */
234 void (*pv_reboot) __P((char *bootstr));
235 void (*pv_printf) __P((const char *fmt, ...));
236 void (*pv_abort) __P((void)); /* L1-A abort */
237 int *pv_ticks; /* Ticks since last reset */
238 __dead void (*pv_halt) __P((void)) __attribute__((noreturn));/* Halt! */
239 void (**pv_synchook) __P((void)); /* "sync" command hook */
240
241 /*
242 * This eval's a FORTH string. Unfortunately, its interface
243 * changed between V0 and V2, which gave us much pain.
244 */
245 union {
246 void (*v0_eval) __P((int len, char *str));
247 void (*v2_eval) __P((char *str));
248 } pv_fortheval;
249
250 struct v0bootargs **pv_v0bootargs; /* V0: Boot args */
251
252 /* Extract Ethernet address from network device. */
253 u_int (*pv_enaddr) __P((int d, char *enaddr));
254
255 struct v2bootargs pv_v2bootargs; /* V2: Boot args + std in/out */
256 struct v2devops pv_v2devops; /* V2: device operations */
257
258 int pv_spare[15];
259
260 /*
261 * The following is machine-dependent.
262 *
263 * The sun4c needs a PROM function to set a PMEG for another
264 * context, so that the kernel can map itself in all contexts.
265 * It is not possible simply to set the context register, because
266 * contexts 1 through N may have invalid translations for the
267 * current program counter. The hardware has a mode in which
268 * all memory references go to the PROM, so the PROM can do it
269 * easily.
270 */
271 void (*pv_setctxt) __P((int ctxt, caddr_t va, int pmeg));
272
273 /*
274 * The following are V3 ROM functions to handle MP machines in the
275 * Sun4m series. They have undefined results when run on a uniprocessor!
276 */
277 int (*pv_v3cpustart) __P((u_int module,
278 struct openprom_addr *ctxtbl,
279 int context, caddr_t pc));
280 int (*pv_v3cpustop) __P((u_int module));
281 int (*pv_v3cpuidle) __P((u_int module));
282 int (*pv_v3cpuresume) __P((u_int module));
283 };
284
285 /*
286 * In addition to the global stuff defined in the PROM vectors above,
287 * the PROM has quite a collection of `nodes'. A node is described by
288 * an integer---these seem to be internal pointers, actually---and the
289 * nodes are arranged into an N-ary tree. Each node implements a fixed
290 * set of functions, as described below. The first two deal with the tree
291 * structure, allowing traversals in either breadth- or depth-first fashion.
292 * The rest deal with `properties'.
293 *
294 * A node property is simply a name/value pair. The names are C strings
295 * (NUL-terminated); the values are arbitrary byte strings (counted strings).
296 * Many values are really just C strings. Sometimes these are NUL-terminated,
297 * sometimes not, depending on the the interface version; v0 seems to
298 * terminate and v2 not. Many others are simply integers stored as four
299 * bytes in machine order: you just get them and go. The third popular
300 * format is an `physical address', which is made up of one or more sets
301 * of three integers as defined above.
302 *
303 * N.B.: for the `next' functions, next(0) = first, and next(last) = 0.
304 * Whoever designed this part had good taste. On the other hand, these
305 * operation vectors are global, rather than per-node, yet the pointers
306 * are not in the openprom vectors but rather found by indirection from
307 * there. So the taste balances out.
308 */
309
310 struct nodeops {
311 /*
312 * Tree traversal.
313 */
314 int (*no_nextnode) __P((int node)); /* next(node) */
315 int (*no_child) __P((int node)); /* first child */
316
317 /*
318 * Property functions. Proper use of getprop requires calling
319 * proplen first to make sure it fits. Kind of a pain, but no
320 * doubt more convenient for the PROM coder.
321 */
322 int (*no_proplen) __P((int node, caddr_t name));
323 int (*no_getprop) __P((int node, caddr_t name, caddr_t val));
324 int (*no_setprop) __P((int node, caddr_t name, caddr_t val,
325 int len));
326 caddr_t (*no_nextprop) __P((int node, caddr_t name));
327 };
328
329 void romhalt __P((void)) __attribute__((__noreturn__));
330 void romboot __P((char *)) __attribute__((__noreturn__));
331 void rominterpret __P((char *));
332 void callrom __P((void));
333
334 int findroot __P((void));
335 int findnode __P((int, const char *));
336 int opennode __P((char *));
337 int firstchild __P((int));
338 int nextsibling __P((int));
339
340 /*
341 * The various getprop* functions obtain `properties' from the ROMs.
342 * getprop() obtains a property as a byte-sequence, and returns its
343 * length; the others convert or make some other guarantee.
344 */
345 int getproplen __P((int node, char *name));
346 int getprop __P((int, char *, int, int *, void **));
347 int getpropint __P((int node, char *name, int deflt));
348 char *getpropstring __P((int node, char *name));
349 char *getpropstringA __P((int, char *, char *));
350 int search_prom __P((int, char *));
351 int node_has_property __P((int, const char *));
352
353
354 extern struct promvec *promvec;
355 /* Frequently used options node */
356 extern int optionsnode;
357
358 #endif /* _BSD_OPENPROM_H_ */
359