ieee.h revision 1.3
11.3Sagc/*	$NetBSD: ieee.h,v 1.3 2003/08/07 16:29:39 agc Exp $ */
21.2Sderaadt
31.1Sderaadt/*
41.1Sderaadt * Copyright (c) 1992, 1993
51.1Sderaadt *	The Regents of the University of California.  All rights reserved.
61.1Sderaadt *
71.1Sderaadt * This software was developed by the Computer Systems Engineering group
81.1Sderaadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
91.1Sderaadt * contributed to Berkeley.
101.1Sderaadt *
111.1Sderaadt * All advertising materials mentioning features or use of this software
121.1Sderaadt * must display the following acknowledgement:
131.1Sderaadt *	This product includes software developed by the University of
141.1Sderaadt *	California, Lawrence Berkeley Laboratory.
151.1Sderaadt *
161.1Sderaadt * Redistribution and use in source and binary forms, with or without
171.1Sderaadt * modification, are permitted provided that the following conditions
181.1Sderaadt * are met:
191.1Sderaadt * 1. Redistributions of source code must retain the above copyright
201.1Sderaadt *    notice, this list of conditions and the following disclaimer.
211.1Sderaadt * 2. Redistributions in binary form must reproduce the above copyright
221.1Sderaadt *    notice, this list of conditions and the following disclaimer in the
231.1Sderaadt *    documentation and/or other materials provided with the distribution.
241.3Sagc * 3. Neither the name of the University nor the names of its contributors
251.1Sderaadt *    may be used to endorse or promote products derived from this software
261.1Sderaadt *    without specific prior written permission.
271.1Sderaadt *
281.1Sderaadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
291.1Sderaadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
301.1Sderaadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
311.1Sderaadt * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
321.1Sderaadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
331.1Sderaadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
341.1Sderaadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
351.1Sderaadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
361.1Sderaadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
371.1Sderaadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
381.1Sderaadt * SUCH DAMAGE.
391.1Sderaadt *
401.1Sderaadt *	@(#)ieee.h	8.1 (Berkeley) 6/11/93
411.1Sderaadt */
421.1Sderaadt
431.1Sderaadt/*
441.1Sderaadt * ieee.h defines the machine-dependent layout of the machine's IEEE
451.1Sderaadt * floating point.  It does *not* define (yet?) any of the rounding
461.1Sderaadt * mode bits, exceptions, and so forth.
471.1Sderaadt */
481.1Sderaadt
491.1Sderaadt/*
501.1Sderaadt * Define the number of bits in each fraction and exponent.
511.1Sderaadt *
521.1Sderaadt *		     k	         k+1
531.1Sderaadt * Note that  1.0 x 2  == 0.1 x 2      and that denorms are represented
541.1Sderaadt *
551.1Sderaadt *					  (-exp_bias+1)
561.1Sderaadt * as fractions that look like 0.fffff x 2             .  This means that
571.1Sderaadt *
581.1Sderaadt *			 -126
591.1Sderaadt * the number 0.10000 x 2    , for instance, is the same as the normalized
601.1Sderaadt *
611.1Sderaadt *		-127			   -128
621.1Sderaadt * float 1.0 x 2    .  Thus, to represent 2    , we need one leading zero
631.1Sderaadt *
641.1Sderaadt *				  -129
651.1Sderaadt * in the fraction; to represent 2    , we need two, and so on.  This
661.1Sderaadt *
671.1Sderaadt *						     (-exp_bias-fracbits+1)
681.1Sderaadt * implies that the smallest denormalized number is 2
691.1Sderaadt *
701.1Sderaadt * for whichever format we are talking about: for single precision, for
711.1Sderaadt *
721.1Sderaadt *						-126		-149
731.1Sderaadt * instance, we get .00000000000000000000001 x 2    , or 1.0 x 2    , and
741.1Sderaadt *
751.1Sderaadt * -149 == -127 - 23 + 1.
761.1Sderaadt */
771.1Sderaadt#define	SNG_EXPBITS	8
781.1Sderaadt#define	SNG_FRACBITS	23
791.1Sderaadt
801.1Sderaadt#define	DBL_EXPBITS	11
811.1Sderaadt#define	DBL_FRACBITS	52
821.1Sderaadt
831.1Sderaadt#ifdef notyet
841.1Sderaadt#define	E80_EXPBITS	15
851.1Sderaadt#define	E80_FRACBITS	64
861.1Sderaadt#endif
871.1Sderaadt
881.1Sderaadt#define	EXT_EXPBITS	15
891.1Sderaadt#define	EXT_FRACBITS	112
901.1Sderaadt
911.1Sderaadtstruct ieee_single {
921.1Sderaadt	u_int	sng_sign:1;
931.1Sderaadt	u_int	sng_exp:8;
941.1Sderaadt	u_int	sng_frac:23;
951.1Sderaadt};
961.1Sderaadt
971.1Sderaadtstruct ieee_double {
981.1Sderaadt	u_int	dbl_sign:1;
991.1Sderaadt	u_int	dbl_exp:11;
1001.1Sderaadt	u_int	dbl_frach:20;
1011.1Sderaadt	u_int	dbl_fracl;
1021.1Sderaadt};
1031.1Sderaadt
1041.1Sderaadtstruct ieee_ext {
1051.1Sderaadt	u_int	ext_sign:1;
1061.1Sderaadt	u_int	ext_exp:15;
1071.1Sderaadt	u_int	ext_frach:16;
1081.1Sderaadt	u_int	ext_frachm;
1091.1Sderaadt	u_int	ext_fraclm;
1101.1Sderaadt	u_int	ext_fracl;
1111.1Sderaadt};
1121.1Sderaadt
1131.1Sderaadt/*
1141.1Sderaadt * Floats whose exponent is in [1..INFNAN) (of whatever type) are
1151.1Sderaadt * `normal'.  Floats whose exponent is INFNAN are either Inf or NaN.
1161.1Sderaadt * Floats whose exponent is zero are either zero (iff all fraction
1171.1Sderaadt * bits are zero) or subnormal values.
1181.1Sderaadt *
1191.1Sderaadt * A NaN is a `signalling NaN' if its QUIETNAN bit is clear in its
1201.1Sderaadt * high fraction; if the bit is set, it is a `quiet NaN'.
1211.1Sderaadt */
1221.1Sderaadt#define	SNG_EXP_INFNAN	255
1231.1Sderaadt#define	DBL_EXP_INFNAN	2047
1241.1Sderaadt#define	EXT_EXP_INFNAN	32767
1251.1Sderaadt
1261.1Sderaadt#if 0
1271.1Sderaadt#define	SNG_QUIETNAN	(1 << 22)
1281.1Sderaadt#define	DBL_QUIETNAN	(1 << 19)
1291.1Sderaadt#define	EXT_QUIETNAN	(1 << 15)
1301.1Sderaadt#endif
1311.1Sderaadt
1321.1Sderaadt/*
1331.1Sderaadt * Exponent biases.
1341.1Sderaadt */
1351.1Sderaadt#define	SNG_EXP_BIAS	127
1361.1Sderaadt#define	DBL_EXP_BIAS	1023
1371.1Sderaadt#define	EXT_EXP_BIAS	16383
138