1 1.98 andvar /* $NetBSD: pmap.h,v 1.98 2024/03/23 18:48:31 andvar Exp $ */ 2 1.8 deraadt 3 1.1 deraadt /* 4 1.20 pk * Copyright (c) 1996 5 1.21 abrown * The President and Fellows of Harvard College. All rights reserved. 6 1.1 deraadt * Copyright (c) 1992, 1993 7 1.1 deraadt * The Regents of the University of California. All rights reserved. 8 1.1 deraadt * 9 1.1 deraadt * This software was developed by the Computer Systems Engineering group 10 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 11 1.1 deraadt * contributed to Berkeley. 12 1.1 deraadt * 13 1.1 deraadt * All advertising materials mentioning features or use of this software 14 1.1 deraadt * must display the following acknowledgement: 15 1.20 pk * This product includes software developed by Aaron Brown and 16 1.20 pk * Harvard University. 17 1.1 deraadt * This product includes software developed by the University of 18 1.1 deraadt * California, Lawrence Berkeley Laboratory. 19 1.1 deraadt * 20 1.20 pk * @InsertRedistribution@ 21 1.1 deraadt * 3. All advertising materials mentioning features or use of this software 22 1.1 deraadt * must display the following acknowledgement: 23 1.20 pk * This product includes software developed by Aaron Brown and 24 1.20 pk * Harvard University. 25 1.1 deraadt * This product includes software developed by the University of 26 1.1 deraadt * California, Berkeley and its contributors. 27 1.1 deraadt * 4. Neither the name of the University nor the names of its contributors 28 1.1 deraadt * may be used to endorse or promote products derived from this software 29 1.1 deraadt * without specific prior written permission. 30 1.1 deraadt * 31 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 1.1 deraadt * SUCH DAMAGE. 42 1.1 deraadt * 43 1.1 deraadt * @(#)pmap.h 8.1 (Berkeley) 6/11/93 44 1.1 deraadt */ 45 1.1 deraadt 46 1.1 deraadt #ifndef _SPARC_PMAP_H_ 47 1.1 deraadt #define _SPARC_PMAP_H_ 48 1.59 darrenr 49 1.59 darrenr #if defined(_KERNEL_OPT) 50 1.59 darrenr #include "opt_sparc_arch.h" 51 1.59 darrenr #endif 52 1.1 deraadt 53 1.94 mrg struct vm_page; 54 1.94 mrg 55 1.94 mrg #include <uvm/uvm_prot.h> 56 1.94 mrg #include <uvm/uvm_pmap.h> 57 1.94 mrg 58 1.83 mrg #include <sparc/pte.h> 59 1.1 deraadt 60 1.1 deraadt /* 61 1.1 deraadt * Pmap structure. 62 1.1 deraadt * 63 1.1 deraadt * The pmap structure really comes in two variants, one---a single 64 1.1 deraadt * instance---for kernel virtual memory and the other---up to nproc 65 1.1 deraadt * instances---for user virtual memory. Unfortunately, we have to mash 66 1.1 deraadt * both into the same structure. Fortunately, they are almost the same. 67 1.1 deraadt * 68 1.1 deraadt * The kernel begins at 0xf8000000 and runs to 0xffffffff (although 69 1.1 deraadt * some of this is not actually used). Kernel space, including DVMA 70 1.1 deraadt * space (for now?), is mapped identically into all user contexts. 71 1.1 deraadt * There is no point in duplicating this mapping in each user process 72 1.1 deraadt * so they do not appear in the user structures. 73 1.1 deraadt * 74 1.1 deraadt * User space begins at 0x00000000 and runs through 0x1fffffff, 75 1.1 deraadt * then has a `hole', then resumes at 0xe0000000 and runs until it 76 1.1 deraadt * hits the kernel space at 0xf8000000. This can be mapped 77 1.98 andvar * contiguously by ignoring the top two bits and pretending the 78 1.1 deraadt * space goes from 0 to 37ffffff. Typically the lower range is 79 1.1 deraadt * used for text+data and the upper for stack, but the code here 80 1.1 deraadt * makes no such distinction. 81 1.1 deraadt * 82 1.1 deraadt * Since each virtual segment covers 256 kbytes, the user space 83 1.1 deraadt * requires 3584 segments, while the kernel (including DVMA) requires 84 1.1 deraadt * only 512 segments. 85 1.1 deraadt * 86 1.20 pk * 87 1.20 pk ** FOR THE SUN4/SUN4C 88 1.20 pk * 89 1.1 deraadt * The segment map entry for virtual segment vseg is offset in 90 1.1 deraadt * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by 91 1.1 deraadt * NUSEG if it is. We keep a pointer called pmap->pm_segmap 92 1.1 deraadt * pre-offset by this value. pmap->pm_segmap thus contains the 93 1.1 deraadt * values to be loaded into the user portion of the hardware segment 94 1.1 deraadt * map so as to reach the proper PMEGs within the MMU. The kernel 95 1.1 deraadt * mappings are `set early' and are always valid in every context 96 1.1 deraadt * (every change is always propagated immediately). 97 1.1 deraadt * 98 1.1 deraadt * The PMEGs within the MMU are loaded `on demand'; when a PMEG is 99 1.1 deraadt * taken away from context `c', the pmap for context c has its 100 1.1 deraadt * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment 101 1.1 deraadt * map entry is also made invalid at the same time). Thus 102 1.1 deraadt * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever 103 1.1 deraadt * the corresponding PTEs are not actually in the MMU. On the other 104 1.1 deraadt * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment 105 1.1 deraadt * are in core; otherwise it points to a copy of the 32 or 64 PTEs that 106 1.1 deraadt * must be loaded in the MMU in order to reach those pages. 107 1.1 deraadt * pm_npte[vseg] counts the number of valid pages in each vseg. 108 1.1 deraadt * 109 1.1 deraadt * XXX performance: faster to count valid bits? 110 1.1 deraadt * 111 1.1 deraadt * The kernel pmap cannot malloc() PTEs since malloc() will sometimes 112 1.1 deraadt * allocate a new virtual segment. Since kernel mappings are never 113 1.44 soren * `stolen' out of the MMU, we just keep all its PTEs there, and have 114 1.44 soren * no software copies. Its mmu entries are nonetheless kept on lists 115 1.1 deraadt * so that the code that fiddles with mmu lists has something to fiddle. 116 1.20 pk * 117 1.60 thorpej ** FOR THE SUN4M/SUN4D 118 1.20 pk * 119 1.20 pk * On this architecture, the virtual-to-physical translation (page) tables 120 1.20 pk * are *not* stored within the MMU as they are in the earlier Sun architect- 121 1.20 pk * ures; instead, they are maintained entirely within physical memory (there 122 1.20 pk * is a TLB cache to prevent the high performance hit from keeping all page 123 1.20 pk * tables in core). Thus there is no need to dynamically allocate PMEGs or 124 1.20 pk * SMEGs; only contexts must be shared. 125 1.20 pk * 126 1.20 pk * We maintain two parallel sets of tables: one is the actual MMU-edible 127 1.20 pk * hierarchy of page tables in allocated kernel memory; these tables refer 128 1.20 pk * to each other by physical address pointers in SRMMU format (thus they 129 1.20 pk * are not very useful to the kernel's management routines). The other set 130 1.20 pk * of tables is similar to those used for the Sun4/100's 3-level MMU; it 131 1.20 pk * is a hierarchy of regmap and segmap structures which contain kernel virtual 132 1.20 pk * pointers to each other. These must (unfortunately) be kept in sync. 133 1.20 pk * 134 1.1 deraadt */ 135 1.15 pk #define NKREG ((int)((-(unsigned)KERNBASE) / NBPRG)) /* i.e., 8 */ 136 1.15 pk #define NUREG (256 - NKREG) /* i.e., 248 */ 137 1.15 pk 138 1.15 pk TAILQ_HEAD(mmuhd,mmuentry); 139 1.1 deraadt 140 1.20 pk /* 141 1.20 pk * data appearing in both user and kernel pmaps 142 1.20 pk * 143 1.20 pk * note: if we want the same binaries to work on the 4/4c and 4m, we have to 144 1.20 pk * include the fields for both to make sure that the struct kproc 145 1.20 pk * is the same size. 146 1.20 pk */ 147 1.5 pk struct pmap { 148 1.5 pk union ctxinfo *pm_ctx; /* current context, if any */ 149 1.5 pk int pm_ctxnum; /* current context's number */ 150 1.64 mrg u_int pm_cpuset; /* CPU's this pmap has context on */ 151 1.5 pk int pm_refcount; /* just what it says */ 152 1.15 pk 153 1.20 pk struct mmuhd pm_reglist; /* MMU regions on this pmap (4/4c) */ 154 1.20 pk struct mmuhd pm_seglist; /* MMU segments on this pmap (4/4c) */ 155 1.20 pk 156 1.15 pk struct regmap *pm_regmap; 157 1.20 pk 158 1.42 pk int **pm_reg_ptps; /* SRMMU-edible region tables for 4m */ 159 1.42 pk int *pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */ 160 1.20 pk 161 1.15 pk int pm_gap_start; /* Starting with this vreg there's */ 162 1.15 pk int pm_gap_end; /* no valid mapping until here */ 163 1.15 pk 164 1.6 deraadt struct pmap_statistics pm_stats; /* pmap statistics */ 165 1.69 pk u_int pm_flags; 166 1.69 pk #define PMAP_USERCACHECLEAN 1 167 1.1 deraadt }; 168 1.1 deraadt 169 1.15 pk struct regmap { 170 1.15 pk struct segmap *rg_segmap; /* point to NSGPRG PMEGs */ 171 1.20 pk int *rg_seg_ptps; /* SRMMU-edible segment tables (NULL 172 1.20 pk * indicates invalid region (4m) */ 173 1.20 pk smeg_t rg_smeg; /* the MMU region number (4c) */ 174 1.15 pk u_char rg_nsegmap; /* number of valid PMEGS */ 175 1.1 deraadt }; 176 1.1 deraadt 177 1.15 pk struct segmap { 178 1.74 chs uint64_t sg_wiremap; /* per-page wire bits (4m) */ 179 1.15 pk int *sg_pte; /* points to NPTESG PTEs */ 180 1.20 pk pmeg_t sg_pmeg; /* the MMU segment number (4c) */ 181 1.72 pk u_char sg_npte; /* number of valid PTEs in sg_pte 182 1.72 pk * (not used for 4m/4d kernel_map) */ 183 1.70 pk int8_t sg_nwired; /* number of wired pages */ 184 1.1 deraadt }; 185 1.1 deraadt 186 1.13 jtc #ifdef _KERNEL 187 1.1 deraadt 188 1.1 deraadt #define PMAP_NULL ((pmap_t)0) 189 1.1 deraadt 190 1.96 mrg /* Mostly private data exported for a few key consumers. */ 191 1.97 mrg struct memarr; 192 1.96 mrg extern struct memarr *pmemarr; 193 1.96 mrg extern int npmemarr; 194 1.96 mrg extern vaddr_t prom_vstart; 195 1.96 mrg extern vaddr_t prom_vend; 196 1.96 mrg 197 1.49 pk /* 198 1.49 pk * Bounds on managed physical addresses. Used by (MD) users 199 1.49 pk * of uvm_pglistalloc() to provide search hints. 200 1.49 pk */ 201 1.49 pk extern paddr_t vm_first_phys, vm_last_phys; 202 1.49 pk extern psize_t vm_num_phys; 203 1.1 deraadt 204 1.1 deraadt /* 205 1.1 deraadt * Since PTEs also contain type bits, we have to have some way 206 1.1 deraadt * to tell pmap_enter `this is an IO page' or `this is not to 207 1.1 deraadt * be cached'. Since physical addresses are always aligned, we 208 1.1 deraadt * can do this with the low order bits. 209 1.1 deraadt * 210 1.1 deraadt * The ordering below is important: PMAP_PGTYPE << PG_TNC must give 211 1.1 deraadt * exactly the PG_NC and PG_TYPE bits. 212 1.1 deraadt */ 213 1.1 deraadt #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */ 214 1.1 deraadt #define PMAP_VME16 2 /* etc */ 215 1.1 deraadt #define PMAP_VME32 3 /* etc */ 216 1.1 deraadt #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */ 217 1.26 pk #define PMAP_TNC_4 7 /* mask to get PG_TYPE & PG_NC */ 218 1.26 pk 219 1.34 pk #define PMAP_T2PTE_4(x) (((x) & PMAP_TNC_4) << PG_TNC_SHIFT) 220 1.34 pk #define PMAP_IOENC_4(io) (io) 221 1.26 pk 222 1.26 pk /* 223 1.26 pk * On a SRMMU machine, the iospace is encoded in bits [3-6] of the 224 1.26 pk * physical address passed to pmap_enter(). 225 1.26 pk */ 226 1.26 pk #define PMAP_TYPE_SRMMU 0x78 /* mask to get 4m page type */ 227 1.26 pk #define PMAP_PTESHFT_SRMMU 25 /* right shift to put type in pte */ 228 1.26 pk #define PMAP_SHFT_SRMMU 3 /* left shift to extract iospace */ 229 1.26 pk #define PMAP_TNC_SRMMU 127 /* mask to get PG_TYPE & PG_NC */ 230 1.1 deraadt 231 1.20 pk /*#define PMAP_IOC 0x00800000 -* IO cacheable, NOT shifted */ 232 1.20 pk 233 1.26 pk #define PMAP_T2PTE_SRMMU(x) (((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU) 234 1.26 pk #define PMAP_IOENC_SRMMU(io) ((io) << PMAP_SHFT_SRMMU) 235 1.26 pk 236 1.26 pk /* Encode IO space for pmap_enter() */ 237 1.60 thorpej #define PMAP_IOENC(io) (CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \ 238 1.60 thorpej : PMAP_IOENC_4(io)) 239 1.20 pk 240 1.73 pk int pmap_dumpsize(void); 241 1.78 christos int pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t); 242 1.7 deraadt 243 1.71 pk #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 244 1.74 chs #define pmap_wired_count(pm) ((pm)->pm_stats.wired_count) 245 1.9 pk 246 1.91 chs #define PMAP_PREFER(fo, ap, sz, td) pmap_prefer((fo), (ap), (sz), (td)) 247 1.19 christos 248 1.20 pk #define PMAP_EXCLUDE_DECLS /* tells MI pmap.h *not* to include decls */ 249 1.20 pk 250 1.20 pk /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */ 251 1.20 pk 252 1.73 pk void pmap_activate(struct lwp *); 253 1.73 pk void pmap_deactivate(struct lwp *); 254 1.73 pk void pmap_bootstrap(int nmmu, int nctx, int nregion); 255 1.91 chs void pmap_prefer(vaddr_t, vaddr_t *, size_t, int); 256 1.73 pk int pmap_pa_exists(paddr_t); 257 1.73 pk void pmap_unwire(pmap_t, vaddr_t); 258 1.73 pk void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t); 259 1.73 pk pmap_t pmap_create(void); 260 1.73 pk void pmap_destroy(pmap_t); 261 1.73 pk void pmap_init(void); 262 1.73 pk vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, int); 263 1.80 macallan #define pmap_phys_address(x) (x) 264 1.73 pk void pmap_reference(pmap_t); 265 1.73 pk void pmap_remove(pmap_t, vaddr_t, vaddr_t); 266 1.92 mrg #define pmap_update(pmap) __USE(pmap) 267 1.73 pk void pmap_virtual_space(vaddr_t *, vaddr_t *); 268 1.69 pk #ifdef PMAP_GROWKERNEL 269 1.73 pk vaddr_t pmap_growkernel(vaddr_t); 270 1.69 pk #endif 271 1.73 pk void pmap_redzone(void); 272 1.79 mrg void kvm_uncache(char *, int); 273 1.73 pk int mmu_pagein(struct pmap *pm, vaddr_t, int); 274 1.73 pk void pmap_writetext(unsigned char *, int); 275 1.73 pk void pmap_globalize_boot_cpuinfo(struct cpu_info *); 276 1.93 ad bool pmap_remove_all(struct pmap *pm); 277 1.90 he #define pmap_mmap_flags(x) 0 /* dummy so far */ 278 1.20 pk 279 1.20 pk /* SUN4/SUN4C SPECIFIC DECLARATIONS */ 280 1.20 pk 281 1.20 pk #if defined(SUN4) || defined(SUN4C) 282 1.77 thorpej bool pmap_clear_modify4_4c(struct vm_page *); 283 1.77 thorpej bool pmap_clear_reference4_4c(struct vm_page *); 284 1.73 pk void pmap_copy_page4_4c(paddr_t, paddr_t); 285 1.85 skrll int pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); 286 1.77 thorpej bool pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *); 287 1.77 thorpej bool pmap_is_modified4_4c(struct vm_page *); 288 1.77 thorpej bool pmap_is_referenced4_4c(struct vm_page *); 289 1.87 cegger void pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int); 290 1.73 pk void pmap_kremove4_4c(vaddr_t, vsize_t); 291 1.73 pk void pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t); 292 1.73 pk void pmap_page_protect4_4c(struct vm_page *, vm_prot_t); 293 1.73 pk void pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t); 294 1.73 pk void pmap_zero_page4_4c(paddr_t); 295 1.60 thorpej #endif /* defined SUN4 || defined SUN4C */ 296 1.20 pk 297 1.60 thorpej /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */ 298 1.20 pk 299 1.60 thorpej #if defined(SUN4M) || defined(SUN4D) 300 1.77 thorpej bool pmap_clear_modify4m(struct vm_page *); 301 1.77 thorpej bool pmap_clear_reference4m(struct vm_page *); 302 1.73 pk void pmap_copy_page4m(paddr_t, paddr_t); 303 1.45 pk void pmap_copy_page_viking_mxcc(paddr_t, paddr_t); 304 1.46 pk void pmap_copy_page_hypersparc(paddr_t, paddr_t); 305 1.85 skrll int pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); 306 1.77 thorpej bool pmap_extract4m(pmap_t, vaddr_t, paddr_t *); 307 1.77 thorpej bool pmap_is_modified4m(struct vm_page *); 308 1.77 thorpej bool pmap_is_referenced4m(struct vm_page *); 309 1.87 cegger void pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int); 310 1.73 pk void pmap_kremove4m(vaddr_t, vsize_t); 311 1.73 pk void pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t); 312 1.73 pk void pmap_page_protect4m(struct vm_page *, vm_prot_t); 313 1.73 pk void pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t); 314 1.73 pk void pmap_zero_page4m(paddr_t); 315 1.45 pk void pmap_zero_page_viking_mxcc(paddr_t); 316 1.46 pk void pmap_zero_page_hypersparc(paddr_t); 317 1.60 thorpej #endif /* defined SUN4M || defined SUN4D */ 318 1.20 pk 319 1.60 thorpej #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C)) 320 1.20 pk 321 1.34 pk #define pmap_clear_modify pmap_clear_modify4_4c 322 1.20 pk #define pmap_clear_reference pmap_clear_reference4_4c 323 1.20 pk #define pmap_enter pmap_enter4_4c 324 1.20 pk #define pmap_extract pmap_extract4_4c 325 1.20 pk #define pmap_is_modified pmap_is_modified4_4c 326 1.20 pk #define pmap_is_referenced pmap_is_referenced4_4c 327 1.41 chs #define pmap_kenter_pa pmap_kenter_pa4_4c 328 1.41 chs #define pmap_kremove pmap_kremove4_4c 329 1.66 pk #define pmap_kprotect pmap_kprotect4_4c 330 1.20 pk #define pmap_page_protect pmap_page_protect4_4c 331 1.20 pk #define pmap_protect pmap_protect4_4c 332 1.20 pk 333 1.60 thorpej #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C)) 334 1.20 pk 335 1.34 pk #define pmap_clear_modify pmap_clear_modify4m 336 1.20 pk #define pmap_clear_reference pmap_clear_reference4m 337 1.20 pk #define pmap_enter pmap_enter4m 338 1.20 pk #define pmap_extract pmap_extract4m 339 1.20 pk #define pmap_is_modified pmap_is_modified4m 340 1.20 pk #define pmap_is_referenced pmap_is_referenced4m 341 1.41 chs #define pmap_kenter_pa pmap_kenter_pa4m 342 1.41 chs #define pmap_kremove pmap_kremove4m 343 1.66 pk #define pmap_kprotect pmap_kprotect4m 344 1.20 pk #define pmap_page_protect pmap_page_protect4m 345 1.20 pk #define pmap_protect pmap_protect4m 346 1.20 pk 347 1.20 pk #else /* must use function pointers */ 348 1.20 pk 349 1.77 thorpej extern bool (*pmap_clear_modify_p)(struct vm_page *); 350 1.77 thorpej extern bool (*pmap_clear_reference_p)(struct vm_page *); 351 1.85 skrll extern int (*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int); 352 1.77 thorpej extern bool (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *); 353 1.77 thorpej extern bool (*pmap_is_modified_p)(struct vm_page *); 354 1.77 thorpej extern bool (*pmap_is_referenced_p)(struct vm_page *); 355 1.87 cegger extern void (*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int); 356 1.73 pk extern void (*pmap_kremove_p)(vaddr_t, vsize_t); 357 1.73 pk extern void (*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t); 358 1.73 pk extern void (*pmap_page_protect_p)(struct vm_page *, vm_prot_t); 359 1.73 pk extern void (*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t); 360 1.20 pk 361 1.34 pk #define pmap_clear_modify (*pmap_clear_modify_p) 362 1.20 pk #define pmap_clear_reference (*pmap_clear_reference_p) 363 1.20 pk #define pmap_enter (*pmap_enter_p) 364 1.20 pk #define pmap_extract (*pmap_extract_p) 365 1.20 pk #define pmap_is_modified (*pmap_is_modified_p) 366 1.20 pk #define pmap_is_referenced (*pmap_is_referenced_p) 367 1.41 chs #define pmap_kenter_pa (*pmap_kenter_pa_p) 368 1.41 chs #define pmap_kremove (*pmap_kremove_p) 369 1.66 pk #define pmap_kprotect (*pmap_kprotect_p) 370 1.20 pk #define pmap_page_protect (*pmap_page_protect_p) 371 1.20 pk #define pmap_protect (*pmap_protect_p) 372 1.20 pk 373 1.20 pk #endif 374 1.45 pk 375 1.45 pk /* pmap_{zero,copy}_page() may be assisted by specialized hardware */ 376 1.45 pk #define pmap_zero_page (*cpuinfo.zero_page) 377 1.45 pk #define pmap_copy_page (*cpuinfo.copy_page) 378 1.57 mrg 379 1.60 thorpej #if defined(SUN4M) || defined(SUN4D) 380 1.57 mrg /* 381 1.57 mrg * Macros which implement SRMMU TLB flushing/invalidation 382 1.57 mrg */ 383 1.57 mrg #define tlb_flush_page_real(va) \ 384 1.63 pk sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0) 385 1.57 mrg 386 1.63 pk #define tlb_flush_segment_real(va) \ 387 1.63 pk sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0) 388 1.57 mrg 389 1.63 pk #define tlb_flush_region_real(va) \ 390 1.63 pk sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0) 391 1.57 mrg 392 1.57 mrg #define tlb_flush_context_real() sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0) 393 1.57 mrg #define tlb_flush_all_real() sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0) 394 1.57 mrg 395 1.96 mrg void setpte4m(vaddr_t va, int pte); 396 1.96 mrg 397 1.60 thorpej #endif /* SUN4M || SUN4D */ 398 1.7 deraadt 399 1.89 uebayasi #define __HAVE_VM_PAGE_MD 400 1.89 uebayasi 401 1.89 uebayasi /* 402 1.89 uebayasi * For each managed physical page, there is a list of all currently 403 1.89 uebayasi * valid virtual mappings of that page. Since there is usually one 404 1.89 uebayasi * (or zero) mapping per page, the table begins with an initial entry, 405 1.89 uebayasi * rather than a pointer; this head entry is empty iff its pv_pmap 406 1.89 uebayasi * field is NULL. 407 1.89 uebayasi */ 408 1.89 uebayasi struct vm_page_md { 409 1.89 uebayasi struct pvlist { 410 1.89 uebayasi struct pvlist *pv_next; /* next pvlist, if any */ 411 1.89 uebayasi struct pmap *pv_pmap; /* pmap of this va */ 412 1.89 uebayasi vaddr_t pv_va; /* virtual address */ 413 1.89 uebayasi int pv_flags; /* flags (below) */ 414 1.89 uebayasi } pvlisthead; 415 1.89 uebayasi }; 416 1.89 uebayasi #define VM_MDPAGE_PVHEAD(pg) (&(pg)->mdpage.pvlisthead) 417 1.89 uebayasi 418 1.89 uebayasi #define VM_MDPAGE_INIT(pg) do { \ 419 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_next = NULL; \ 420 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_pmap = NULL; \ 421 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_va = 0; \ 422 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_flags = 0; \ 423 1.89 uebayasi } while(/*CONSTCOND*/0) 424 1.89 uebayasi 425 1.13 jtc #endif /* _KERNEL */ 426 1.1 deraadt 427 1.1 deraadt #endif /* _SPARC_PMAP_H_ */ 428