pmap.h revision 1.91 1 1.91 chs /* $NetBSD: pmap.h,v 1.91 2013/01/07 16:59:18 chs Exp $ */
2 1.8 deraadt
3 1.1 deraadt /*
4 1.20 pk * Copyright (c) 1996
5 1.21 abrown * The President and Fellows of Harvard College. All rights reserved.
6 1.1 deraadt * Copyright (c) 1992, 1993
7 1.1 deraadt * The Regents of the University of California. All rights reserved.
8 1.1 deraadt *
9 1.1 deraadt * This software was developed by the Computer Systems Engineering group
10 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 1.1 deraadt * contributed to Berkeley.
12 1.1 deraadt *
13 1.1 deraadt * All advertising materials mentioning features or use of this software
14 1.1 deraadt * must display the following acknowledgement:
15 1.20 pk * This product includes software developed by Aaron Brown and
16 1.20 pk * Harvard University.
17 1.1 deraadt * This product includes software developed by the University of
18 1.1 deraadt * California, Lawrence Berkeley Laboratory.
19 1.1 deraadt *
20 1.20 pk * @InsertRedistribution@
21 1.1 deraadt * 3. All advertising materials mentioning features or use of this software
22 1.1 deraadt * must display the following acknowledgement:
23 1.20 pk * This product includes software developed by Aaron Brown and
24 1.20 pk * Harvard University.
25 1.1 deraadt * This product includes software developed by the University of
26 1.1 deraadt * California, Berkeley and its contributors.
27 1.1 deraadt * 4. Neither the name of the University nor the names of its contributors
28 1.1 deraadt * may be used to endorse or promote products derived from this software
29 1.1 deraadt * without specific prior written permission.
30 1.1 deraadt *
31 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 1.1 deraadt * SUCH DAMAGE.
42 1.1 deraadt *
43 1.1 deraadt * @(#)pmap.h 8.1 (Berkeley) 6/11/93
44 1.1 deraadt */
45 1.1 deraadt
46 1.1 deraadt #ifndef _SPARC_PMAP_H_
47 1.1 deraadt #define _SPARC_PMAP_H_
48 1.59 darrenr
49 1.59 darrenr #if defined(_KERNEL_OPT)
50 1.59 darrenr #include "opt_sparc_arch.h"
51 1.59 darrenr #endif
52 1.1 deraadt
53 1.83 mrg #include <sparc/pte.h>
54 1.1 deraadt
55 1.1 deraadt /*
56 1.1 deraadt * Pmap structure.
57 1.1 deraadt *
58 1.1 deraadt * The pmap structure really comes in two variants, one---a single
59 1.1 deraadt * instance---for kernel virtual memory and the other---up to nproc
60 1.1 deraadt * instances---for user virtual memory. Unfortunately, we have to mash
61 1.1 deraadt * both into the same structure. Fortunately, they are almost the same.
62 1.1 deraadt *
63 1.1 deraadt * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
64 1.1 deraadt * some of this is not actually used). Kernel space, including DVMA
65 1.1 deraadt * space (for now?), is mapped identically into all user contexts.
66 1.1 deraadt * There is no point in duplicating this mapping in each user process
67 1.1 deraadt * so they do not appear in the user structures.
68 1.1 deraadt *
69 1.1 deraadt * User space begins at 0x00000000 and runs through 0x1fffffff,
70 1.1 deraadt * then has a `hole', then resumes at 0xe0000000 and runs until it
71 1.1 deraadt * hits the kernel space at 0xf8000000. This can be mapped
72 1.1 deraadt * contiguously by ignorning the top two bits and pretending the
73 1.1 deraadt * space goes from 0 to 37ffffff. Typically the lower range is
74 1.1 deraadt * used for text+data and the upper for stack, but the code here
75 1.1 deraadt * makes no such distinction.
76 1.1 deraadt *
77 1.1 deraadt * Since each virtual segment covers 256 kbytes, the user space
78 1.1 deraadt * requires 3584 segments, while the kernel (including DVMA) requires
79 1.1 deraadt * only 512 segments.
80 1.1 deraadt *
81 1.20 pk *
82 1.20 pk ** FOR THE SUN4/SUN4C
83 1.20 pk *
84 1.1 deraadt * The segment map entry for virtual segment vseg is offset in
85 1.1 deraadt * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
86 1.1 deraadt * NUSEG if it is. We keep a pointer called pmap->pm_segmap
87 1.1 deraadt * pre-offset by this value. pmap->pm_segmap thus contains the
88 1.1 deraadt * values to be loaded into the user portion of the hardware segment
89 1.1 deraadt * map so as to reach the proper PMEGs within the MMU. The kernel
90 1.1 deraadt * mappings are `set early' and are always valid in every context
91 1.1 deraadt * (every change is always propagated immediately).
92 1.1 deraadt *
93 1.1 deraadt * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
94 1.1 deraadt * taken away from context `c', the pmap for context c has its
95 1.1 deraadt * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
96 1.1 deraadt * map entry is also made invalid at the same time). Thus
97 1.1 deraadt * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
98 1.1 deraadt * the corresponding PTEs are not actually in the MMU. On the other
99 1.1 deraadt * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
100 1.1 deraadt * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
101 1.1 deraadt * must be loaded in the MMU in order to reach those pages.
102 1.1 deraadt * pm_npte[vseg] counts the number of valid pages in each vseg.
103 1.1 deraadt *
104 1.1 deraadt * XXX performance: faster to count valid bits?
105 1.1 deraadt *
106 1.1 deraadt * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
107 1.1 deraadt * allocate a new virtual segment. Since kernel mappings are never
108 1.44 soren * `stolen' out of the MMU, we just keep all its PTEs there, and have
109 1.44 soren * no software copies. Its mmu entries are nonetheless kept on lists
110 1.1 deraadt * so that the code that fiddles with mmu lists has something to fiddle.
111 1.20 pk *
112 1.60 thorpej ** FOR THE SUN4M/SUN4D
113 1.20 pk *
114 1.20 pk * On this architecture, the virtual-to-physical translation (page) tables
115 1.20 pk * are *not* stored within the MMU as they are in the earlier Sun architect-
116 1.20 pk * ures; instead, they are maintained entirely within physical memory (there
117 1.20 pk * is a TLB cache to prevent the high performance hit from keeping all page
118 1.20 pk * tables in core). Thus there is no need to dynamically allocate PMEGs or
119 1.20 pk * SMEGs; only contexts must be shared.
120 1.20 pk *
121 1.20 pk * We maintain two parallel sets of tables: one is the actual MMU-edible
122 1.20 pk * hierarchy of page tables in allocated kernel memory; these tables refer
123 1.20 pk * to each other by physical address pointers in SRMMU format (thus they
124 1.20 pk * are not very useful to the kernel's management routines). The other set
125 1.20 pk * of tables is similar to those used for the Sun4/100's 3-level MMU; it
126 1.20 pk * is a hierarchy of regmap and segmap structures which contain kernel virtual
127 1.20 pk * pointers to each other. These must (unfortunately) be kept in sync.
128 1.20 pk *
129 1.1 deraadt */
130 1.15 pk #define NKREG ((int)((-(unsigned)KERNBASE) / NBPRG)) /* i.e., 8 */
131 1.15 pk #define NUREG (256 - NKREG) /* i.e., 248 */
132 1.15 pk
133 1.15 pk TAILQ_HEAD(mmuhd,mmuentry);
134 1.1 deraadt
135 1.20 pk /*
136 1.20 pk * data appearing in both user and kernel pmaps
137 1.20 pk *
138 1.20 pk * note: if we want the same binaries to work on the 4/4c and 4m, we have to
139 1.20 pk * include the fields for both to make sure that the struct kproc
140 1.20 pk * is the same size.
141 1.20 pk */
142 1.5 pk struct pmap {
143 1.5 pk union ctxinfo *pm_ctx; /* current context, if any */
144 1.5 pk int pm_ctxnum; /* current context's number */
145 1.64 mrg u_int pm_cpuset; /* CPU's this pmap has context on */
146 1.5 pk int pm_refcount; /* just what it says */
147 1.15 pk
148 1.20 pk struct mmuhd pm_reglist; /* MMU regions on this pmap (4/4c) */
149 1.20 pk struct mmuhd pm_seglist; /* MMU segments on this pmap (4/4c) */
150 1.20 pk
151 1.15 pk struct regmap *pm_regmap;
152 1.20 pk
153 1.42 pk int **pm_reg_ptps; /* SRMMU-edible region tables for 4m */
154 1.42 pk int *pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
155 1.20 pk
156 1.15 pk int pm_gap_start; /* Starting with this vreg there's */
157 1.15 pk int pm_gap_end; /* no valid mapping until here */
158 1.15 pk
159 1.6 deraadt struct pmap_statistics pm_stats; /* pmap statistics */
160 1.69 pk u_int pm_flags;
161 1.69 pk #define PMAP_USERCACHECLEAN 1
162 1.1 deraadt };
163 1.1 deraadt
164 1.15 pk struct regmap {
165 1.15 pk struct segmap *rg_segmap; /* point to NSGPRG PMEGs */
166 1.20 pk int *rg_seg_ptps; /* SRMMU-edible segment tables (NULL
167 1.20 pk * indicates invalid region (4m) */
168 1.20 pk smeg_t rg_smeg; /* the MMU region number (4c) */
169 1.15 pk u_char rg_nsegmap; /* number of valid PMEGS */
170 1.1 deraadt };
171 1.1 deraadt
172 1.15 pk struct segmap {
173 1.74 chs uint64_t sg_wiremap; /* per-page wire bits (4m) */
174 1.15 pk int *sg_pte; /* points to NPTESG PTEs */
175 1.20 pk pmeg_t sg_pmeg; /* the MMU segment number (4c) */
176 1.72 pk u_char sg_npte; /* number of valid PTEs in sg_pte
177 1.72 pk * (not used for 4m/4d kernel_map) */
178 1.70 pk int8_t sg_nwired; /* number of wired pages */
179 1.1 deraadt };
180 1.1 deraadt
181 1.20 pk #if 0
182 1.20 pk struct kvm_cpustate {
183 1.20 pk int kvm_npmemarr;
184 1.20 pk struct memarr kvm_pmemarr[MA_SIZE];
185 1.20 pk int kvm_seginval; /* [4,4c] */
186 1.20 pk struct segmap kvm_segmap_store[NKREG*NSEGRG]; /* [4,4c] */
187 1.20 pk }/*not yet used*/;
188 1.20 pk #endif
189 1.20 pk
190 1.13 jtc #ifdef _KERNEL
191 1.1 deraadt
192 1.1 deraadt #define PMAP_NULL ((pmap_t)0)
193 1.1 deraadt
194 1.49 pk /*
195 1.49 pk * Bounds on managed physical addresses. Used by (MD) users
196 1.49 pk * of uvm_pglistalloc() to provide search hints.
197 1.49 pk */
198 1.49 pk extern paddr_t vm_first_phys, vm_last_phys;
199 1.49 pk extern psize_t vm_num_phys;
200 1.1 deraadt
201 1.1 deraadt /*
202 1.1 deraadt * Since PTEs also contain type bits, we have to have some way
203 1.1 deraadt * to tell pmap_enter `this is an IO page' or `this is not to
204 1.1 deraadt * be cached'. Since physical addresses are always aligned, we
205 1.1 deraadt * can do this with the low order bits.
206 1.1 deraadt *
207 1.1 deraadt * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
208 1.1 deraadt * exactly the PG_NC and PG_TYPE bits.
209 1.1 deraadt */
210 1.1 deraadt #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */
211 1.1 deraadt #define PMAP_VME16 2 /* etc */
212 1.1 deraadt #define PMAP_VME32 3 /* etc */
213 1.1 deraadt #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */
214 1.26 pk #define PMAP_TNC_4 7 /* mask to get PG_TYPE & PG_NC */
215 1.26 pk
216 1.34 pk #define PMAP_T2PTE_4(x) (((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
217 1.34 pk #define PMAP_IOENC_4(io) (io)
218 1.26 pk
219 1.26 pk /*
220 1.26 pk * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
221 1.26 pk * physical address passed to pmap_enter().
222 1.26 pk */
223 1.26 pk #define PMAP_TYPE_SRMMU 0x78 /* mask to get 4m page type */
224 1.26 pk #define PMAP_PTESHFT_SRMMU 25 /* right shift to put type in pte */
225 1.26 pk #define PMAP_SHFT_SRMMU 3 /* left shift to extract iospace */
226 1.26 pk #define PMAP_TNC_SRMMU 127 /* mask to get PG_TYPE & PG_NC */
227 1.1 deraadt
228 1.20 pk /*#define PMAP_IOC 0x00800000 -* IO cacheable, NOT shifted */
229 1.20 pk
230 1.26 pk #define PMAP_T2PTE_SRMMU(x) (((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
231 1.26 pk #define PMAP_IOENC_SRMMU(io) ((io) << PMAP_SHFT_SRMMU)
232 1.26 pk
233 1.26 pk /* Encode IO space for pmap_enter() */
234 1.60 thorpej #define PMAP_IOENC(io) (CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \
235 1.60 thorpej : PMAP_IOENC_4(io))
236 1.20 pk
237 1.73 pk int pmap_dumpsize(void);
238 1.78 christos int pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t);
239 1.7 deraadt
240 1.71 pk #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
241 1.74 chs #define pmap_wired_count(pm) ((pm)->pm_stats.wired_count)
242 1.9 pk
243 1.91 chs #define PMAP_PREFER(fo, ap, sz, td) pmap_prefer((fo), (ap), (sz), (td))
244 1.19 christos
245 1.20 pk #define PMAP_EXCLUDE_DECLS /* tells MI pmap.h *not* to include decls */
246 1.20 pk
247 1.20 pk /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
248 1.20 pk
249 1.73 pk void pmap_activate(struct lwp *);
250 1.73 pk void pmap_deactivate(struct lwp *);
251 1.73 pk void pmap_bootstrap(int nmmu, int nctx, int nregion);
252 1.91 chs void pmap_prefer(vaddr_t, vaddr_t *, size_t, int);
253 1.73 pk int pmap_pa_exists(paddr_t);
254 1.73 pk void pmap_unwire(pmap_t, vaddr_t);
255 1.73 pk void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
256 1.73 pk pmap_t pmap_create(void);
257 1.73 pk void pmap_destroy(pmap_t);
258 1.73 pk void pmap_init(void);
259 1.73 pk vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, int);
260 1.80 macallan #define pmap_phys_address(x) (x)
261 1.73 pk void pmap_reference(pmap_t);
262 1.73 pk void pmap_remove(pmap_t, vaddr_t, vaddr_t);
263 1.58 chris #define pmap_update(pmap) /* nothing (yet) */
264 1.73 pk void pmap_virtual_space(vaddr_t *, vaddr_t *);
265 1.69 pk #ifdef PMAP_GROWKERNEL
266 1.73 pk vaddr_t pmap_growkernel(vaddr_t);
267 1.69 pk #endif
268 1.73 pk void pmap_redzone(void);
269 1.79 mrg void kvm_uncache(char *, int);
270 1.73 pk int mmu_pagein(struct pmap *pm, vaddr_t, int);
271 1.73 pk void pmap_writetext(unsigned char *, int);
272 1.73 pk void pmap_globalize_boot_cpuinfo(struct cpu_info *);
273 1.69 pk void pmap_remove_all(struct pmap *pm);
274 1.90 he #define pmap_mmap_flags(x) 0 /* dummy so far */
275 1.20 pk
276 1.20 pk /* SUN4/SUN4C SPECIFIC DECLARATIONS */
277 1.20 pk
278 1.20 pk #if defined(SUN4) || defined(SUN4C)
279 1.77 thorpej bool pmap_clear_modify4_4c(struct vm_page *);
280 1.77 thorpej bool pmap_clear_reference4_4c(struct vm_page *);
281 1.73 pk void pmap_copy_page4_4c(paddr_t, paddr_t);
282 1.85 skrll int pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
283 1.77 thorpej bool pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *);
284 1.77 thorpej bool pmap_is_modified4_4c(struct vm_page *);
285 1.77 thorpej bool pmap_is_referenced4_4c(struct vm_page *);
286 1.87 cegger void pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int);
287 1.73 pk void pmap_kremove4_4c(vaddr_t, vsize_t);
288 1.73 pk void pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t);
289 1.73 pk void pmap_page_protect4_4c(struct vm_page *, vm_prot_t);
290 1.73 pk void pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
291 1.73 pk void pmap_zero_page4_4c(paddr_t);
292 1.60 thorpej #endif /* defined SUN4 || defined SUN4C */
293 1.20 pk
294 1.60 thorpej /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */
295 1.20 pk
296 1.60 thorpej #if defined(SUN4M) || defined(SUN4D)
297 1.77 thorpej bool pmap_clear_modify4m(struct vm_page *);
298 1.77 thorpej bool pmap_clear_reference4m(struct vm_page *);
299 1.73 pk void pmap_copy_page4m(paddr_t, paddr_t);
300 1.45 pk void pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
301 1.46 pk void pmap_copy_page_hypersparc(paddr_t, paddr_t);
302 1.85 skrll int pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
303 1.77 thorpej bool pmap_extract4m(pmap_t, vaddr_t, paddr_t *);
304 1.77 thorpej bool pmap_is_modified4m(struct vm_page *);
305 1.77 thorpej bool pmap_is_referenced4m(struct vm_page *);
306 1.87 cegger void pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int);
307 1.73 pk void pmap_kremove4m(vaddr_t, vsize_t);
308 1.73 pk void pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t);
309 1.73 pk void pmap_page_protect4m(struct vm_page *, vm_prot_t);
310 1.73 pk void pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
311 1.73 pk void pmap_zero_page4m(paddr_t);
312 1.45 pk void pmap_zero_page_viking_mxcc(paddr_t);
313 1.46 pk void pmap_zero_page_hypersparc(paddr_t);
314 1.60 thorpej #endif /* defined SUN4M || defined SUN4D */
315 1.20 pk
316 1.60 thorpej #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C))
317 1.20 pk
318 1.34 pk #define pmap_clear_modify pmap_clear_modify4_4c
319 1.20 pk #define pmap_clear_reference pmap_clear_reference4_4c
320 1.20 pk #define pmap_enter pmap_enter4_4c
321 1.20 pk #define pmap_extract pmap_extract4_4c
322 1.20 pk #define pmap_is_modified pmap_is_modified4_4c
323 1.20 pk #define pmap_is_referenced pmap_is_referenced4_4c
324 1.41 chs #define pmap_kenter_pa pmap_kenter_pa4_4c
325 1.41 chs #define pmap_kremove pmap_kremove4_4c
326 1.66 pk #define pmap_kprotect pmap_kprotect4_4c
327 1.20 pk #define pmap_page_protect pmap_page_protect4_4c
328 1.20 pk #define pmap_protect pmap_protect4_4c
329 1.20 pk
330 1.60 thorpej #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C))
331 1.20 pk
332 1.34 pk #define pmap_clear_modify pmap_clear_modify4m
333 1.20 pk #define pmap_clear_reference pmap_clear_reference4m
334 1.20 pk #define pmap_enter pmap_enter4m
335 1.20 pk #define pmap_extract pmap_extract4m
336 1.20 pk #define pmap_is_modified pmap_is_modified4m
337 1.20 pk #define pmap_is_referenced pmap_is_referenced4m
338 1.41 chs #define pmap_kenter_pa pmap_kenter_pa4m
339 1.41 chs #define pmap_kremove pmap_kremove4m
340 1.66 pk #define pmap_kprotect pmap_kprotect4m
341 1.20 pk #define pmap_page_protect pmap_page_protect4m
342 1.20 pk #define pmap_protect pmap_protect4m
343 1.20 pk
344 1.20 pk #else /* must use function pointers */
345 1.20 pk
346 1.77 thorpej extern bool (*pmap_clear_modify_p)(struct vm_page *);
347 1.77 thorpej extern bool (*pmap_clear_reference_p)(struct vm_page *);
348 1.85 skrll extern int (*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
349 1.77 thorpej extern bool (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *);
350 1.77 thorpej extern bool (*pmap_is_modified_p)(struct vm_page *);
351 1.77 thorpej extern bool (*pmap_is_referenced_p)(struct vm_page *);
352 1.87 cegger extern void (*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int);
353 1.73 pk extern void (*pmap_kremove_p)(vaddr_t, vsize_t);
354 1.73 pk extern void (*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t);
355 1.73 pk extern void (*pmap_page_protect_p)(struct vm_page *, vm_prot_t);
356 1.73 pk extern void (*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
357 1.20 pk
358 1.34 pk #define pmap_clear_modify (*pmap_clear_modify_p)
359 1.20 pk #define pmap_clear_reference (*pmap_clear_reference_p)
360 1.20 pk #define pmap_enter (*pmap_enter_p)
361 1.20 pk #define pmap_extract (*pmap_extract_p)
362 1.20 pk #define pmap_is_modified (*pmap_is_modified_p)
363 1.20 pk #define pmap_is_referenced (*pmap_is_referenced_p)
364 1.41 chs #define pmap_kenter_pa (*pmap_kenter_pa_p)
365 1.41 chs #define pmap_kremove (*pmap_kremove_p)
366 1.66 pk #define pmap_kprotect (*pmap_kprotect_p)
367 1.20 pk #define pmap_page_protect (*pmap_page_protect_p)
368 1.20 pk #define pmap_protect (*pmap_protect_p)
369 1.20 pk
370 1.20 pk #endif
371 1.45 pk
372 1.45 pk /* pmap_{zero,copy}_page() may be assisted by specialized hardware */
373 1.45 pk #define pmap_zero_page (*cpuinfo.zero_page)
374 1.45 pk #define pmap_copy_page (*cpuinfo.copy_page)
375 1.57 mrg
376 1.60 thorpej #if defined(SUN4M) || defined(SUN4D)
377 1.57 mrg /*
378 1.57 mrg * Macros which implement SRMMU TLB flushing/invalidation
379 1.57 mrg */
380 1.57 mrg #define tlb_flush_page_real(va) \
381 1.63 pk sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
382 1.57 mrg
383 1.63 pk #define tlb_flush_segment_real(va) \
384 1.63 pk sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0)
385 1.57 mrg
386 1.63 pk #define tlb_flush_region_real(va) \
387 1.63 pk sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
388 1.57 mrg
389 1.57 mrg #define tlb_flush_context_real() sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
390 1.57 mrg #define tlb_flush_all_real() sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
391 1.57 mrg
392 1.60 thorpej #endif /* SUN4M || SUN4D */
393 1.7 deraadt
394 1.89 uebayasi #define __HAVE_VM_PAGE_MD
395 1.89 uebayasi
396 1.89 uebayasi /*
397 1.89 uebayasi * For each managed physical page, there is a list of all currently
398 1.89 uebayasi * valid virtual mappings of that page. Since there is usually one
399 1.89 uebayasi * (or zero) mapping per page, the table begins with an initial entry,
400 1.89 uebayasi * rather than a pointer; this head entry is empty iff its pv_pmap
401 1.89 uebayasi * field is NULL.
402 1.89 uebayasi */
403 1.89 uebayasi struct vm_page_md {
404 1.89 uebayasi struct pvlist {
405 1.89 uebayasi struct pvlist *pv_next; /* next pvlist, if any */
406 1.89 uebayasi struct pmap *pv_pmap; /* pmap of this va */
407 1.89 uebayasi vaddr_t pv_va; /* virtual address */
408 1.89 uebayasi int pv_flags; /* flags (below) */
409 1.89 uebayasi } pvlisthead;
410 1.89 uebayasi };
411 1.89 uebayasi #define VM_MDPAGE_PVHEAD(pg) (&(pg)->mdpage.pvlisthead)
412 1.89 uebayasi
413 1.89 uebayasi #define VM_MDPAGE_INIT(pg) do { \
414 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_next = NULL; \
415 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_pmap = NULL; \
416 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_va = 0; \
417 1.89 uebayasi (pg)->mdpage.pvlisthead.pv_flags = 0; \
418 1.89 uebayasi } while(/*CONSTCOND*/0)
419 1.89 uebayasi
420 1.13 jtc #endif /* _KERNEL */
421 1.1 deraadt
422 1.1 deraadt #endif /* _SPARC_PMAP_H_ */
423