pmap.h revision 1.21 1 /* $NetBSD: pmap.h,v 1.21 1996/05/16 15:57:01 abrown Exp $ */
2
3 /*
4 * Copyright (c) 1996
5 * The President and Fellows of Harvard College. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Aaron Brown and
16 * Harvard University.
17 * This product includes software developed by the University of
18 * California, Lawrence Berkeley Laboratory.
19 *
20 * @InsertRedistribution@
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by Aaron Brown and
24 * Harvard University.
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * @(#)pmap.h 8.1 (Berkeley) 6/11/93
44 *
45 * $Id: pmap.h,v 1.21 1996/05/16 15:57:01 abrown Exp $
46 */
47
48 #ifndef _SPARC_PMAP_H_
49 #define _SPARC_PMAP_H_
50
51 #include <machine/pte.h>
52
53 /*
54 * Pmap structure.
55 *
56 * The pmap structure really comes in two variants, one---a single
57 * instance---for kernel virtual memory and the other---up to nproc
58 * instances---for user virtual memory. Unfortunately, we have to mash
59 * both into the same structure. Fortunately, they are almost the same.
60 *
61 * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
62 * some of this is not actually used). Kernel space, including DVMA
63 * space (for now?), is mapped identically into all user contexts.
64 * There is no point in duplicating this mapping in each user process
65 * so they do not appear in the user structures.
66 *
67 * User space begins at 0x00000000 and runs through 0x1fffffff,
68 * then has a `hole', then resumes at 0xe0000000 and runs until it
69 * hits the kernel space at 0xf8000000. This can be mapped
70 * contiguously by ignorning the top two bits and pretending the
71 * space goes from 0 to 37ffffff. Typically the lower range is
72 * used for text+data and the upper for stack, but the code here
73 * makes no such distinction.
74 *
75 * Since each virtual segment covers 256 kbytes, the user space
76 * requires 3584 segments, while the kernel (including DVMA) requires
77 * only 512 segments.
78 *
79 *
80 ** FOR THE SUN4/SUN4C
81 *
82 * The segment map entry for virtual segment vseg is offset in
83 * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
84 * NUSEG if it is. We keep a pointer called pmap->pm_segmap
85 * pre-offset by this value. pmap->pm_segmap thus contains the
86 * values to be loaded into the user portion of the hardware segment
87 * map so as to reach the proper PMEGs within the MMU. The kernel
88 * mappings are `set early' and are always valid in every context
89 * (every change is always propagated immediately).
90 *
91 * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
92 * taken away from context `c', the pmap for context c has its
93 * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
94 * map entry is also made invalid at the same time). Thus
95 * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
96 * the corresponding PTEs are not actually in the MMU. On the other
97 * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
98 * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
99 * must be loaded in the MMU in order to reach those pages.
100 * pm_npte[vseg] counts the number of valid pages in each vseg.
101 *
102 * XXX performance: faster to count valid bits?
103 *
104 * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
105 * allocate a new virtual segment. Since kernel mappings are never
106 * `stolen' out of the the MMU, we just keep all its PTEs there, and
107 * have no software copies. Its mmu entries are nonetheless kept on lists
108 * so that the code that fiddles with mmu lists has something to fiddle.
109 *
110 ** FOR THE SUN4M
111 *
112 * On this architecture, the virtual-to-physical translation (page) tables
113 * are *not* stored within the MMU as they are in the earlier Sun architect-
114 * ures; instead, they are maintained entirely within physical memory (there
115 * is a TLB cache to prevent the high performance hit from keeping all page
116 * tables in core). Thus there is no need to dynamically allocate PMEGs or
117 * SMEGs; only contexts must be shared.
118 *
119 * We maintain two parallel sets of tables: one is the actual MMU-edible
120 * hierarchy of page tables in allocated kernel memory; these tables refer
121 * to each other by physical address pointers in SRMMU format (thus they
122 * are not very useful to the kernel's management routines). The other set
123 * of tables is similar to those used for the Sun4/100's 3-level MMU; it
124 * is a hierarchy of regmap and segmap structures which contain kernel virtual
125 * pointers to each other. These must (unfortunately) be kept in sync.
126 *
127 */
128 #define NKREG ((int)((-(unsigned)KERNBASE) / NBPRG)) /* i.e., 8 */
129 #define NUREG (256 - NKREG) /* i.e., 248 */
130
131 TAILQ_HEAD(mmuhd,mmuentry);
132
133 /*
134 * data appearing in both user and kernel pmaps
135 *
136 * note: if we want the same binaries to work on the 4/4c and 4m, we have to
137 * include the fields for both to make sure that the struct kproc
138 * is the same size.
139 */
140 struct pmap {
141 union ctxinfo *pm_ctx; /* current context, if any */
142 int pm_ctxnum; /* current context's number */
143 #if NCPUS > 1
144 simple_lock_data_t pm_lock; /* spinlock */
145 #endif
146 int pm_refcount; /* just what it says */
147
148 struct mmuhd pm_reglist; /* MMU regions on this pmap (4/4c) */
149 struct mmuhd pm_seglist; /* MMU segments on this pmap (4/4c) */
150
151 void *pm_regstore;
152 struct regmap *pm_regmap;
153
154 int *pm_reg_ptps; /* SRMMU-edible region table for 4m */
155 int pm_reg_ptps_pa; /* _Physical_ address of pm_reg_ptps */
156
157 int pm_gap_start; /* Starting with this vreg there's */
158 int pm_gap_end; /* no valid mapping until here */
159
160 struct pmap_statistics pm_stats; /* pmap statistics */
161 };
162
163 struct regmap {
164 struct segmap *rg_segmap; /* point to NSGPRG PMEGs */
165 int *rg_seg_ptps; /* SRMMU-edible segment tables (NULL
166 * indicates invalid region (4m) */
167 smeg_t rg_smeg; /* the MMU region number (4c) */
168 u_char rg_nsegmap; /* number of valid PMEGS */
169 };
170
171 struct segmap {
172 int *sg_pte; /* points to NPTESG PTEs */
173 pmeg_t sg_pmeg; /* the MMU segment number (4c) */
174 u_char sg_npte; /* number of valid PTEs per seg */
175 };
176
177 typedef struct pmap *pmap_t;
178
179 #if 0
180 struct kvm_cpustate {
181 int kvm_npmemarr;
182 struct memarr kvm_pmemarr[MA_SIZE];
183 int kvm_seginval; /* [4,4c] */
184 struct segmap kvm_segmap_store[NKREG*NSEGRG]; /* [4,4c] */
185 }/*not yet used*/;
186 #endif
187
188 #ifdef _KERNEL
189
190 #define PMAP_NULL ((pmap_t)0)
191
192 extern struct pmap kernel_pmap_store;
193 extern vm_offset_t vm_first_phys, vm_num_phys;
194
195 /*
196 * Since PTEs also contain type bits, we have to have some way
197 * to tell pmap_enter `this is an IO page' or `this is not to
198 * be cached'. Since physical addresses are always aligned, we
199 * can do this with the low order bits.
200 *
201 * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
202 * exactly the PG_NC and PG_TYPE bits.
203 */
204 #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */
205 #define PMAP_VME16 2 /* etc */
206 #define PMAP_VME32 3 /* etc */
207 #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */
208
209 #define PMAP_TYPE4M 0x78 /* mask to get 4m page type */
210 #define PMAP_PTESHFT4M 25 /* right shift to put type in pte */
211 #define PMAP_SHFT4M 0x3 /* left shift to extract type */
212 #define PMAP_TNC \
213 (CPU_ISSUN4M?127:7) /* mask to get PG_TYPE & PG_NC */
214 /*#define PMAP_IOC 0x00800000 -* IO cacheable, NOT shifted */
215
216
217 #if xxx
218 void pmap_bootstrap __P((int nmmu, int nctx, int nregion));
219 int pmap_count_ptes __P((struct pmap *));
220 void pmap_prefer __P((vm_offset_t, vm_offset_t *));
221 int pmap_pa_exists __P((vm_offset_t));
222 #endif
223 int pmap_dumpsize __P((void));
224 int pmap_dumpmmu __P((int (*)__P((dev_t, daddr_t, caddr_t, size_t)),
225 daddr_t));
226
227 #define pmap_kernel() (&kernel_pmap_store)
228 #define pmap_resident_count(pmap) pmap_count_ptes(pmap)
229 #define managed(pa) ((unsigned)((pa) - vm_first_phys) < vm_num_phys)
230
231 #define PMAP_ACTIVATE(pmap, pcb, iscurproc)
232 #define PMAP_DEACTIVATE(pmap, pcb)
233 #define PMAP_PREFER(fo, ap) pmap_prefer((fo), (ap))
234
235 #define PMAP_EXCLUDE_DECLS /* tells MI pmap.h *not* to include decls */
236
237 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
238
239 void pmap_bootstrap __P((int nmmu, int nctx, int nregion));
240 int pmap_count_ptes __P((struct pmap *));
241 void pmap_prefer __P((vm_offset_t, vm_offset_t *));
242 int pmap_pa_exists __P((vm_offset_t));
243 void *pmap_bootstrap_alloc __P((int));
244 void pmap_change_wiring __P((pmap_t, vm_offset_t, boolean_t));
245 void pmap_collect __P((pmap_t));
246 void pmap_copy __P((pmap_t,
247 pmap_t, vm_offset_t, vm_size_t, vm_offset_t));
248 pmap_t pmap_create __P((vm_size_t));
249 void pmap_destroy __P((pmap_t));
250 void pmap_init __P((void));
251 vm_offset_t pmap_map __P((vm_offset_t, vm_offset_t, vm_offset_t, int));
252 void pmap_pageable __P((pmap_t,
253 vm_offset_t, vm_offset_t, boolean_t));
254 vm_offset_t pmap_phys_address __P((int));
255 void pmap_pinit __P((pmap_t));
256 void pmap_reference __P((pmap_t));
257 void pmap_release __P((pmap_t));
258 void pmap_remove __P((pmap_t, vm_offset_t, vm_offset_t));
259 void pmap_update __P((void));
260 u_int pmap_free_pages __P((void));
261 void pmap_init __P((void));
262 boolean_t pmap_next_page __P((vm_offset_t *));
263 int pmap_page_index __P((vm_offset_t));
264 void pmap_virtual_space __P((vm_offset_t *, vm_offset_t *));
265 void pmap_redzone __P((void));
266 void kvm_uncache __P((caddr_t, int));
267 struct user;
268 void switchexit __P((vm_map_t, struct user *, int));
269
270
271 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
272
273 #if defined(SUN4) || defined(SUN4C)
274 void pmap_clear_modify4_4c __P((vm_offset_t pa));
275 void pmap_clear_reference4_4c __P((vm_offset_t pa));
276 void pmap_copy_page4_4c __P((vm_offset_t, vm_offset_t));
277 void pmap_enter4_4c __P((pmap_t,
278 vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
279 vm_offset_t pmap_extract4_4c __P((pmap_t, vm_offset_t));
280 boolean_t pmap_is_modified4_4c __P((vm_offset_t pa));
281 boolean_t pmap_is_referenced4_4c __P((vm_offset_t pa));
282 void pmap_page_protect4_4c __P((vm_offset_t, vm_prot_t));
283 void pmap_protect4_4c __P((pmap_t,
284 vm_offset_t, vm_offset_t, vm_prot_t));
285 void pmap_zero_page4_4c __P((vm_offset_t));
286 void pmap_changeprot4_4c __P((pmap_t, vm_offset_t, vm_prot_t, int));
287 int mmu_pagein4_4c __P((pmap_t, int, int));
288
289 #endif
290
291 /* SIMILAR DECLARATIONS FOR SUN4M MODULE */
292
293 #if defined(SUN4M)
294 void pmap_clear_modify4m __P((vm_offset_t pa));
295 void pmap_clear_reference4m __P((vm_offset_t pa));
296 void pmap_copy_page4m __P((vm_offset_t, vm_offset_t));
297 void pmap_enter4m __P((pmap_t,
298 vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
299 vm_offset_t pmap_extract4m __P((pmap_t, vm_offset_t));
300 boolean_t pmap_is_modified4m __P((vm_offset_t pa));
301 boolean_t pmap_is_referenced4m __P((vm_offset_t pa));
302 void pmap_page_protect4m __P((vm_offset_t, vm_prot_t));
303 void pmap_protect4m __P((pmap_t,
304 vm_offset_t, vm_offset_t, vm_prot_t));
305 void pmap_zero_page4m __P((vm_offset_t));
306 void pmap_changeprot4m __P((pmap_t, vm_offset_t, vm_prot_t, int));
307 int mmu_pagein4m __P((pmap_t, int, int));
308
309 #endif /* defined SUN4M */
310
311 #if !defined(SUN4M) && (defined(SUN4) || defined(SUN4C))
312
313 #define pmap_clear_modify pmap_clear_modify4_4c
314 #define pmap_clear_reference pmap_clear_reference4_4c
315 #define pmap_copy_page pmap_copy_page4_4c
316 #define pmap_enter pmap_enter4_4c
317 #define pmap_extract pmap_extract4_4c
318 #define pmap_is_modified pmap_is_modified4_4c
319 #define pmap_is_referenced pmap_is_referenced4_4c
320 #define pmap_page_protect pmap_page_protect4_4c
321 #define pmap_protect pmap_protect4_4c
322 #define pmap_zero_page pmap_zero_page4_4c
323 #define pmap_changeprot pmap_changeprot4_4c
324 #define mmu_pagein mmu_pagein4_4c
325
326 #elif defined(SUN4M) && !(defined(SUN4) || defined(SUN4C))
327
328 #define pmap_clear_modify pmap_clear_modify4m
329 #define pmap_clear_reference pmap_clear_reference4m
330 #define pmap_copy_page pmap_copy_page4m
331 #define pmap_enter pmap_enter4m
332 #define pmap_extract pmap_extract4m
333 #define pmap_is_modified pmap_is_modified4m
334 #define pmap_is_referenced pmap_is_referenced4m
335 #define pmap_page_protect pmap_page_protect4m
336 #define pmap_protect pmap_protect4m
337 #define pmap_zero_page pmap_zero_page4m
338 #define pmap_changeprot pmap_changeprot4m
339 #define mmu_pagein mmu_pagein4m
340
341 #else /* must use function pointers */
342
343 extern void (*pmap_clear_modify_p) __P((vm_offset_t pa));
344 extern void (*pmap_clear_reference_p) __P((vm_offset_t pa));
345 extern void (*pmap_copy_page_p) __P((vm_offset_t, vm_offset_t));
346 extern void (*pmap_enter_p) __P((pmap_t,
347 vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
348 extern vm_offset_t (*pmap_extract_p) __P((pmap_t, vm_offset_t));
349 extern boolean_t (*pmap_is_modified_p) __P((vm_offset_t pa));
350 extern boolean_t (*pmap_is_referenced_p) __P((vm_offset_t pa));
351 extern void (*pmap_page_protect_p) __P((vm_offset_t, vm_prot_t));
352 extern void (*pmap_protect_p) __P((pmap_t,
353 vm_offset_t, vm_offset_t, vm_prot_t));
354 extern void (*pmap_zero_page_p) __P((vm_offset_t));
355 extern void (*pmap_changeprot_p) __P((pmap_t, vm_offset_t,
356 vm_prot_t, int));
357 extern int (*mmu_pagein_p) __P((pmap_t, int, int));
358
359 #define pmap_clear_modify (*pmap_clear_modify_p)
360 #define pmap_clear_reference (*pmap_clear_reference_p)
361 #define pmap_copy_page (*pmap_copy_page_p)
362 #define pmap_enter (*pmap_enter_p)
363 #define pmap_extract (*pmap_extract_p)
364 #define pmap_is_modified (*pmap_is_modified_p)
365 #define pmap_is_referenced (*pmap_is_referenced_p)
366 #define pmap_page_protect (*pmap_page_protect_p)
367 #define pmap_protect (*pmap_protect_p)
368 #define pmap_zero_page (*pmap_zero_page_p)
369 #define pmap_changeprot (*pmap_changeprot_p)
370 #define mmu_pagein (*mmu_pagein_p)
371
372 #endif
373
374 #endif /* _KERNEL */
375
376 #endif /* _SPARC_PMAP_H_ */
377