pmap.h revision 1.87 1 /* $NetBSD: pmap.h,v 1.87 2009/11/07 07:27:46 cegger Exp $ */
2
3 /*
4 * Copyright (c) 1996
5 * The President and Fellows of Harvard College. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Aaron Brown and
16 * Harvard University.
17 * This product includes software developed by the University of
18 * California, Lawrence Berkeley Laboratory.
19 *
20 * @InsertRedistribution@
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by Aaron Brown and
24 * Harvard University.
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * @(#)pmap.h 8.1 (Berkeley) 6/11/93
44 */
45
46 #ifndef _SPARC_PMAP_H_
47 #define _SPARC_PMAP_H_
48
49 #if defined(_KERNEL_OPT)
50 #include "opt_sparc_arch.h"
51 #endif
52
53 #include <sparc/pte.h>
54
55 /*
56 * Pmap structure.
57 *
58 * The pmap structure really comes in two variants, one---a single
59 * instance---for kernel virtual memory and the other---up to nproc
60 * instances---for user virtual memory. Unfortunately, we have to mash
61 * both into the same structure. Fortunately, they are almost the same.
62 *
63 * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
64 * some of this is not actually used). Kernel space, including DVMA
65 * space (for now?), is mapped identically into all user contexts.
66 * There is no point in duplicating this mapping in each user process
67 * so they do not appear in the user structures.
68 *
69 * User space begins at 0x00000000 and runs through 0x1fffffff,
70 * then has a `hole', then resumes at 0xe0000000 and runs until it
71 * hits the kernel space at 0xf8000000. This can be mapped
72 * contiguously by ignorning the top two bits and pretending the
73 * space goes from 0 to 37ffffff. Typically the lower range is
74 * used for text+data and the upper for stack, but the code here
75 * makes no such distinction.
76 *
77 * Since each virtual segment covers 256 kbytes, the user space
78 * requires 3584 segments, while the kernel (including DVMA) requires
79 * only 512 segments.
80 *
81 *
82 ** FOR THE SUN4/SUN4C
83 *
84 * The segment map entry for virtual segment vseg is offset in
85 * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
86 * NUSEG if it is. We keep a pointer called pmap->pm_segmap
87 * pre-offset by this value. pmap->pm_segmap thus contains the
88 * values to be loaded into the user portion of the hardware segment
89 * map so as to reach the proper PMEGs within the MMU. The kernel
90 * mappings are `set early' and are always valid in every context
91 * (every change is always propagated immediately).
92 *
93 * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
94 * taken away from context `c', the pmap for context c has its
95 * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
96 * map entry is also made invalid at the same time). Thus
97 * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
98 * the corresponding PTEs are not actually in the MMU. On the other
99 * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
100 * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
101 * must be loaded in the MMU in order to reach those pages.
102 * pm_npte[vseg] counts the number of valid pages in each vseg.
103 *
104 * XXX performance: faster to count valid bits?
105 *
106 * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
107 * allocate a new virtual segment. Since kernel mappings are never
108 * `stolen' out of the MMU, we just keep all its PTEs there, and have
109 * no software copies. Its mmu entries are nonetheless kept on lists
110 * so that the code that fiddles with mmu lists has something to fiddle.
111 *
112 ** FOR THE SUN4M/SUN4D
113 *
114 * On this architecture, the virtual-to-physical translation (page) tables
115 * are *not* stored within the MMU as they are in the earlier Sun architect-
116 * ures; instead, they are maintained entirely within physical memory (there
117 * is a TLB cache to prevent the high performance hit from keeping all page
118 * tables in core). Thus there is no need to dynamically allocate PMEGs or
119 * SMEGs; only contexts must be shared.
120 *
121 * We maintain two parallel sets of tables: one is the actual MMU-edible
122 * hierarchy of page tables in allocated kernel memory; these tables refer
123 * to each other by physical address pointers in SRMMU format (thus they
124 * are not very useful to the kernel's management routines). The other set
125 * of tables is similar to those used for the Sun4/100's 3-level MMU; it
126 * is a hierarchy of regmap and segmap structures which contain kernel virtual
127 * pointers to each other. These must (unfortunately) be kept in sync.
128 *
129 */
130 #define NKREG ((int)((-(unsigned)KERNBASE) / NBPRG)) /* i.e., 8 */
131 #define NUREG (256 - NKREG) /* i.e., 248 */
132
133 TAILQ_HEAD(mmuhd,mmuentry);
134
135 /*
136 * data appearing in both user and kernel pmaps
137 *
138 * note: if we want the same binaries to work on the 4/4c and 4m, we have to
139 * include the fields for both to make sure that the struct kproc
140 * is the same size.
141 */
142 struct pmap {
143 union ctxinfo *pm_ctx; /* current context, if any */
144 int pm_ctxnum; /* current context's number */
145 u_int pm_cpuset; /* CPU's this pmap has context on */
146 int pm_refcount; /* just what it says */
147
148 struct mmuhd pm_reglist; /* MMU regions on this pmap (4/4c) */
149 struct mmuhd pm_seglist; /* MMU segments on this pmap (4/4c) */
150
151 struct regmap *pm_regmap;
152
153 int **pm_reg_ptps; /* SRMMU-edible region tables for 4m */
154 int *pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
155
156 int pm_gap_start; /* Starting with this vreg there's */
157 int pm_gap_end; /* no valid mapping until here */
158
159 struct pmap_statistics pm_stats; /* pmap statistics */
160 u_int pm_flags;
161 #define PMAP_USERCACHECLEAN 1
162 };
163
164 struct regmap {
165 struct segmap *rg_segmap; /* point to NSGPRG PMEGs */
166 int *rg_seg_ptps; /* SRMMU-edible segment tables (NULL
167 * indicates invalid region (4m) */
168 smeg_t rg_smeg; /* the MMU region number (4c) */
169 u_char rg_nsegmap; /* number of valid PMEGS */
170 };
171
172 struct segmap {
173 uint64_t sg_wiremap; /* per-page wire bits (4m) */
174 int *sg_pte; /* points to NPTESG PTEs */
175 pmeg_t sg_pmeg; /* the MMU segment number (4c) */
176 u_char sg_npte; /* number of valid PTEs in sg_pte
177 * (not used for 4m/4d kernel_map) */
178 int8_t sg_nwired; /* number of wired pages */
179 };
180
181 #if 0
182 struct kvm_cpustate {
183 int kvm_npmemarr;
184 struct memarr kvm_pmemarr[MA_SIZE];
185 int kvm_seginval; /* [4,4c] */
186 struct segmap kvm_segmap_store[NKREG*NSEGRG]; /* [4,4c] */
187 }/*not yet used*/;
188 #endif
189
190 #ifdef _KERNEL
191
192 #define PMAP_NULL ((pmap_t)0)
193
194 /*
195 * Bounds on managed physical addresses. Used by (MD) users
196 * of uvm_pglistalloc() to provide search hints.
197 */
198 extern paddr_t vm_first_phys, vm_last_phys;
199 extern psize_t vm_num_phys;
200
201 /*
202 * Since PTEs also contain type bits, we have to have some way
203 * to tell pmap_enter `this is an IO page' or `this is not to
204 * be cached'. Since physical addresses are always aligned, we
205 * can do this with the low order bits.
206 *
207 * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
208 * exactly the PG_NC and PG_TYPE bits.
209 */
210 #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */
211 #define PMAP_VME16 2 /* etc */
212 #define PMAP_VME32 3 /* etc */
213 #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */
214 #define PMAP_TNC_4 7 /* mask to get PG_TYPE & PG_NC */
215
216 #define PMAP_T2PTE_4(x) (((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
217 #define PMAP_IOENC_4(io) (io)
218
219 /*
220 * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
221 * physical address passed to pmap_enter().
222 */
223 #define PMAP_TYPE_SRMMU 0x78 /* mask to get 4m page type */
224 #define PMAP_PTESHFT_SRMMU 25 /* right shift to put type in pte */
225 #define PMAP_SHFT_SRMMU 3 /* left shift to extract iospace */
226 #define PMAP_TNC_SRMMU 127 /* mask to get PG_TYPE & PG_NC */
227
228 /*#define PMAP_IOC 0x00800000 -* IO cacheable, NOT shifted */
229
230 #define PMAP_T2PTE_SRMMU(x) (((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
231 #define PMAP_IOENC_SRMMU(io) ((io) << PMAP_SHFT_SRMMU)
232
233 /* Encode IO space for pmap_enter() */
234 #define PMAP_IOENC(io) (CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \
235 : PMAP_IOENC_4(io))
236
237 int pmap_dumpsize(void);
238 int pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t);
239
240 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
241 #define pmap_wired_count(pm) ((pm)->pm_stats.wired_count)
242
243 #define PMAP_PREFER(fo, ap, sz, td) pmap_prefer((fo), (ap))
244
245 #define PMAP_EXCLUDE_DECLS /* tells MI pmap.h *not* to include decls */
246
247 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
248
249 void pmap_activate(struct lwp *);
250 void pmap_deactivate(struct lwp *);
251 void pmap_bootstrap(int nmmu, int nctx, int nregion);
252 void pmap_prefer(vaddr_t, vaddr_t *);
253 int pmap_pa_exists(paddr_t);
254 void pmap_unwire(pmap_t, vaddr_t);
255 void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
256 pmap_t pmap_create(void);
257 void pmap_destroy(pmap_t);
258 void pmap_init(void);
259 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, int);
260 #define pmap_phys_address(x) (x)
261 void pmap_reference(pmap_t);
262 void pmap_remove(pmap_t, vaddr_t, vaddr_t);
263 #define pmap_update(pmap) /* nothing (yet) */
264 void pmap_virtual_space(vaddr_t *, vaddr_t *);
265 #ifdef PMAP_GROWKERNEL
266 vaddr_t pmap_growkernel(vaddr_t);
267 #endif
268 void pmap_redzone(void);
269 void kvm_uncache(char *, int);
270 struct user;
271 int mmu_pagein(struct pmap *pm, vaddr_t, int);
272 void pmap_writetext(unsigned char *, int);
273 void pmap_globalize_boot_cpuinfo(struct cpu_info *);
274 void pmap_remove_all(struct pmap *pm);
275
276 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
277
278 #if defined(SUN4) || defined(SUN4C)
279 bool pmap_clear_modify4_4c(struct vm_page *);
280 bool pmap_clear_reference4_4c(struct vm_page *);
281 void pmap_copy_page4_4c(paddr_t, paddr_t);
282 int pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
283 bool pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *);
284 bool pmap_is_modified4_4c(struct vm_page *);
285 bool pmap_is_referenced4_4c(struct vm_page *);
286 void pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int);
287 void pmap_kremove4_4c(vaddr_t, vsize_t);
288 void pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t);
289 void pmap_page_protect4_4c(struct vm_page *, vm_prot_t);
290 void pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
291 void pmap_zero_page4_4c(paddr_t);
292 #endif /* defined SUN4 || defined SUN4C */
293
294 /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */
295
296 #if defined(SUN4M) || defined(SUN4D)
297 bool pmap_clear_modify4m(struct vm_page *);
298 bool pmap_clear_reference4m(struct vm_page *);
299 void pmap_copy_page4m(paddr_t, paddr_t);
300 void pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
301 void pmap_copy_page_hypersparc(paddr_t, paddr_t);
302 int pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
303 bool pmap_extract4m(pmap_t, vaddr_t, paddr_t *);
304 bool pmap_is_modified4m(struct vm_page *);
305 bool pmap_is_referenced4m(struct vm_page *);
306 void pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int);
307 void pmap_kremove4m(vaddr_t, vsize_t);
308 void pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t);
309 void pmap_page_protect4m(struct vm_page *, vm_prot_t);
310 void pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
311 void pmap_zero_page4m(paddr_t);
312 void pmap_zero_page_viking_mxcc(paddr_t);
313 void pmap_zero_page_hypersparc(paddr_t);
314 #endif /* defined SUN4M || defined SUN4D */
315
316 #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C))
317
318 #define pmap_clear_modify pmap_clear_modify4_4c
319 #define pmap_clear_reference pmap_clear_reference4_4c
320 #define pmap_enter pmap_enter4_4c
321 #define pmap_extract pmap_extract4_4c
322 #define pmap_is_modified pmap_is_modified4_4c
323 #define pmap_is_referenced pmap_is_referenced4_4c
324 #define pmap_kenter_pa pmap_kenter_pa4_4c
325 #define pmap_kremove pmap_kremove4_4c
326 #define pmap_kprotect pmap_kprotect4_4c
327 #define pmap_page_protect pmap_page_protect4_4c
328 #define pmap_protect pmap_protect4_4c
329
330 #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C))
331
332 #define pmap_clear_modify pmap_clear_modify4m
333 #define pmap_clear_reference pmap_clear_reference4m
334 #define pmap_enter pmap_enter4m
335 #define pmap_extract pmap_extract4m
336 #define pmap_is_modified pmap_is_modified4m
337 #define pmap_is_referenced pmap_is_referenced4m
338 #define pmap_kenter_pa pmap_kenter_pa4m
339 #define pmap_kremove pmap_kremove4m
340 #define pmap_kprotect pmap_kprotect4m
341 #define pmap_page_protect pmap_page_protect4m
342 #define pmap_protect pmap_protect4m
343
344 #else /* must use function pointers */
345
346 extern bool (*pmap_clear_modify_p)(struct vm_page *);
347 extern bool (*pmap_clear_reference_p)(struct vm_page *);
348 extern int (*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
349 extern bool (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *);
350 extern bool (*pmap_is_modified_p)(struct vm_page *);
351 extern bool (*pmap_is_referenced_p)(struct vm_page *);
352 extern void (*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int);
353 extern void (*pmap_kremove_p)(vaddr_t, vsize_t);
354 extern void (*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t);
355 extern void (*pmap_page_protect_p)(struct vm_page *, vm_prot_t);
356 extern void (*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
357
358 #define pmap_clear_modify (*pmap_clear_modify_p)
359 #define pmap_clear_reference (*pmap_clear_reference_p)
360 #define pmap_enter (*pmap_enter_p)
361 #define pmap_extract (*pmap_extract_p)
362 #define pmap_is_modified (*pmap_is_modified_p)
363 #define pmap_is_referenced (*pmap_is_referenced_p)
364 #define pmap_kenter_pa (*pmap_kenter_pa_p)
365 #define pmap_kremove (*pmap_kremove_p)
366 #define pmap_kprotect (*pmap_kprotect_p)
367 #define pmap_page_protect (*pmap_page_protect_p)
368 #define pmap_protect (*pmap_protect_p)
369
370 #endif
371
372 /* pmap_{zero,copy}_page() may be assisted by specialized hardware */
373 #define pmap_zero_page (*cpuinfo.zero_page)
374 #define pmap_copy_page (*cpuinfo.copy_page)
375
376 #if defined(SUN4M) || defined(SUN4D)
377 /*
378 * Macros which implement SRMMU TLB flushing/invalidation
379 */
380 #define tlb_flush_page_real(va) \
381 sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
382
383 #define tlb_flush_segment_real(va) \
384 sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0)
385
386 #define tlb_flush_region_real(va) \
387 sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
388
389 #define tlb_flush_context_real() sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
390 #define tlb_flush_all_real() sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
391
392 #endif /* SUN4M || SUN4D */
393
394 #endif /* _KERNEL */
395
396 #endif /* _SPARC_PMAP_H_ */
397