pmap.h revision 1.97 1 /* $NetBSD: pmap.h,v 1.97 2021/01/25 20:05:29 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1996
5 * The President and Fellows of Harvard College. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Aaron Brown and
16 * Harvard University.
17 * This product includes software developed by the University of
18 * California, Lawrence Berkeley Laboratory.
19 *
20 * @InsertRedistribution@
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by Aaron Brown and
24 * Harvard University.
25 * This product includes software developed by the University of
26 * California, Berkeley and its contributors.
27 * 4. Neither the name of the University nor the names of its contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41 * SUCH DAMAGE.
42 *
43 * @(#)pmap.h 8.1 (Berkeley) 6/11/93
44 */
45
46 #ifndef _SPARC_PMAP_H_
47 #define _SPARC_PMAP_H_
48
49 #if defined(_KERNEL_OPT)
50 #include "opt_sparc_arch.h"
51 #endif
52
53 struct vm_page;
54
55 #include <uvm/uvm_prot.h>
56 #include <uvm/uvm_pmap.h>
57
58 #include <sparc/pte.h>
59
60 /*
61 * Pmap structure.
62 *
63 * The pmap structure really comes in two variants, one---a single
64 * instance---for kernel virtual memory and the other---up to nproc
65 * instances---for user virtual memory. Unfortunately, we have to mash
66 * both into the same structure. Fortunately, they are almost the same.
67 *
68 * The kernel begins at 0xf8000000 and runs to 0xffffffff (although
69 * some of this is not actually used). Kernel space, including DVMA
70 * space (for now?), is mapped identically into all user contexts.
71 * There is no point in duplicating this mapping in each user process
72 * so they do not appear in the user structures.
73 *
74 * User space begins at 0x00000000 and runs through 0x1fffffff,
75 * then has a `hole', then resumes at 0xe0000000 and runs until it
76 * hits the kernel space at 0xf8000000. This can be mapped
77 * contiguously by ignorning the top two bits and pretending the
78 * space goes from 0 to 37ffffff. Typically the lower range is
79 * used for text+data and the upper for stack, but the code here
80 * makes no such distinction.
81 *
82 * Since each virtual segment covers 256 kbytes, the user space
83 * requires 3584 segments, while the kernel (including DVMA) requires
84 * only 512 segments.
85 *
86 *
87 ** FOR THE SUN4/SUN4C
88 *
89 * The segment map entry for virtual segment vseg is offset in
90 * pmap->pm_rsegmap by 0 if pmap is not the kernel pmap, or by
91 * NUSEG if it is. We keep a pointer called pmap->pm_segmap
92 * pre-offset by this value. pmap->pm_segmap thus contains the
93 * values to be loaded into the user portion of the hardware segment
94 * map so as to reach the proper PMEGs within the MMU. The kernel
95 * mappings are `set early' and are always valid in every context
96 * (every change is always propagated immediately).
97 *
98 * The PMEGs within the MMU are loaded `on demand'; when a PMEG is
99 * taken away from context `c', the pmap for context c has its
100 * corresponding pm_segmap[vseg] entry marked invalid (the MMU segment
101 * map entry is also made invalid at the same time). Thus
102 * pm_segmap[vseg] is the `invalid pmeg' number (127 or 511) whenever
103 * the corresponding PTEs are not actually in the MMU. On the other
104 * hand, pm_pte[vseg] is NULL only if no pages in that virtual segment
105 * are in core; otherwise it points to a copy of the 32 or 64 PTEs that
106 * must be loaded in the MMU in order to reach those pages.
107 * pm_npte[vseg] counts the number of valid pages in each vseg.
108 *
109 * XXX performance: faster to count valid bits?
110 *
111 * The kernel pmap cannot malloc() PTEs since malloc() will sometimes
112 * allocate a new virtual segment. Since kernel mappings are never
113 * `stolen' out of the MMU, we just keep all its PTEs there, and have
114 * no software copies. Its mmu entries are nonetheless kept on lists
115 * so that the code that fiddles with mmu lists has something to fiddle.
116 *
117 ** FOR THE SUN4M/SUN4D
118 *
119 * On this architecture, the virtual-to-physical translation (page) tables
120 * are *not* stored within the MMU as they are in the earlier Sun architect-
121 * ures; instead, they are maintained entirely within physical memory (there
122 * is a TLB cache to prevent the high performance hit from keeping all page
123 * tables in core). Thus there is no need to dynamically allocate PMEGs or
124 * SMEGs; only contexts must be shared.
125 *
126 * We maintain two parallel sets of tables: one is the actual MMU-edible
127 * hierarchy of page tables in allocated kernel memory; these tables refer
128 * to each other by physical address pointers in SRMMU format (thus they
129 * are not very useful to the kernel's management routines). The other set
130 * of tables is similar to those used for the Sun4/100's 3-level MMU; it
131 * is a hierarchy of regmap and segmap structures which contain kernel virtual
132 * pointers to each other. These must (unfortunately) be kept in sync.
133 *
134 */
135 #define NKREG ((int)((-(unsigned)KERNBASE) / NBPRG)) /* i.e., 8 */
136 #define NUREG (256 - NKREG) /* i.e., 248 */
137
138 TAILQ_HEAD(mmuhd,mmuentry);
139
140 /*
141 * data appearing in both user and kernel pmaps
142 *
143 * note: if we want the same binaries to work on the 4/4c and 4m, we have to
144 * include the fields for both to make sure that the struct kproc
145 * is the same size.
146 */
147 struct pmap {
148 union ctxinfo *pm_ctx; /* current context, if any */
149 int pm_ctxnum; /* current context's number */
150 u_int pm_cpuset; /* CPU's this pmap has context on */
151 int pm_refcount; /* just what it says */
152
153 struct mmuhd pm_reglist; /* MMU regions on this pmap (4/4c) */
154 struct mmuhd pm_seglist; /* MMU segments on this pmap (4/4c) */
155
156 struct regmap *pm_regmap;
157
158 int **pm_reg_ptps; /* SRMMU-edible region tables for 4m */
159 int *pm_reg_ptps_pa;/* _Physical_ address of pm_reg_ptps */
160
161 int pm_gap_start; /* Starting with this vreg there's */
162 int pm_gap_end; /* no valid mapping until here */
163
164 struct pmap_statistics pm_stats; /* pmap statistics */
165 u_int pm_flags;
166 #define PMAP_USERCACHECLEAN 1
167 };
168
169 struct regmap {
170 struct segmap *rg_segmap; /* point to NSGPRG PMEGs */
171 int *rg_seg_ptps; /* SRMMU-edible segment tables (NULL
172 * indicates invalid region (4m) */
173 smeg_t rg_smeg; /* the MMU region number (4c) */
174 u_char rg_nsegmap; /* number of valid PMEGS */
175 };
176
177 struct segmap {
178 uint64_t sg_wiremap; /* per-page wire bits (4m) */
179 int *sg_pte; /* points to NPTESG PTEs */
180 pmeg_t sg_pmeg; /* the MMU segment number (4c) */
181 u_char sg_npte; /* number of valid PTEs in sg_pte
182 * (not used for 4m/4d kernel_map) */
183 int8_t sg_nwired; /* number of wired pages */
184 };
185
186 #ifdef _KERNEL
187
188 #define PMAP_NULL ((pmap_t)0)
189
190 /* Mostly private data exported for a few key consumers. */
191 struct memarr;
192 extern struct memarr *pmemarr;
193 extern int npmemarr;
194 extern vaddr_t prom_vstart;
195 extern vaddr_t prom_vend;
196
197 /*
198 * Bounds on managed physical addresses. Used by (MD) users
199 * of uvm_pglistalloc() to provide search hints.
200 */
201 extern paddr_t vm_first_phys, vm_last_phys;
202 extern psize_t vm_num_phys;
203
204 /*
205 * Since PTEs also contain type bits, we have to have some way
206 * to tell pmap_enter `this is an IO page' or `this is not to
207 * be cached'. Since physical addresses are always aligned, we
208 * can do this with the low order bits.
209 *
210 * The ordering below is important: PMAP_PGTYPE << PG_TNC must give
211 * exactly the PG_NC and PG_TYPE bits.
212 */
213 #define PMAP_OBIO 1 /* tells pmap_enter to use PG_OBIO */
214 #define PMAP_VME16 2 /* etc */
215 #define PMAP_VME32 3 /* etc */
216 #define PMAP_NC 4 /* tells pmap_enter to set PG_NC */
217 #define PMAP_TNC_4 7 /* mask to get PG_TYPE & PG_NC */
218
219 #define PMAP_T2PTE_4(x) (((x) & PMAP_TNC_4) << PG_TNC_SHIFT)
220 #define PMAP_IOENC_4(io) (io)
221
222 /*
223 * On a SRMMU machine, the iospace is encoded in bits [3-6] of the
224 * physical address passed to pmap_enter().
225 */
226 #define PMAP_TYPE_SRMMU 0x78 /* mask to get 4m page type */
227 #define PMAP_PTESHFT_SRMMU 25 /* right shift to put type in pte */
228 #define PMAP_SHFT_SRMMU 3 /* left shift to extract iospace */
229 #define PMAP_TNC_SRMMU 127 /* mask to get PG_TYPE & PG_NC */
230
231 /*#define PMAP_IOC 0x00800000 -* IO cacheable, NOT shifted */
232
233 #define PMAP_T2PTE_SRMMU(x) (((x) & PMAP_TYPE_SRMMU) << PMAP_PTESHFT_SRMMU)
234 #define PMAP_IOENC_SRMMU(io) ((io) << PMAP_SHFT_SRMMU)
235
236 /* Encode IO space for pmap_enter() */
237 #define PMAP_IOENC(io) (CPU_HAS_SRMMU ? PMAP_IOENC_SRMMU(io) \
238 : PMAP_IOENC_4(io))
239
240 int pmap_dumpsize(void);
241 int pmap_dumpmmu(int (*)(dev_t, daddr_t, void *, size_t), daddr_t);
242
243 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
244 #define pmap_wired_count(pm) ((pm)->pm_stats.wired_count)
245
246 #define PMAP_PREFER(fo, ap, sz, td) pmap_prefer((fo), (ap), (sz), (td))
247
248 #define PMAP_EXCLUDE_DECLS /* tells MI pmap.h *not* to include decls */
249
250 /* FUNCTION DECLARATIONS FOR COMMON PMAP MODULE */
251
252 void pmap_activate(struct lwp *);
253 void pmap_deactivate(struct lwp *);
254 void pmap_bootstrap(int nmmu, int nctx, int nregion);
255 void pmap_prefer(vaddr_t, vaddr_t *, size_t, int);
256 int pmap_pa_exists(paddr_t);
257 void pmap_unwire(pmap_t, vaddr_t);
258 void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
259 pmap_t pmap_create(void);
260 void pmap_destroy(pmap_t);
261 void pmap_init(void);
262 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, int);
263 #define pmap_phys_address(x) (x)
264 void pmap_reference(pmap_t);
265 void pmap_remove(pmap_t, vaddr_t, vaddr_t);
266 #define pmap_update(pmap) __USE(pmap)
267 void pmap_virtual_space(vaddr_t *, vaddr_t *);
268 #ifdef PMAP_GROWKERNEL
269 vaddr_t pmap_growkernel(vaddr_t);
270 #endif
271 void pmap_redzone(void);
272 void kvm_uncache(char *, int);
273 int mmu_pagein(struct pmap *pm, vaddr_t, int);
274 void pmap_writetext(unsigned char *, int);
275 void pmap_globalize_boot_cpuinfo(struct cpu_info *);
276 bool pmap_remove_all(struct pmap *pm);
277 #define pmap_mmap_flags(x) 0 /* dummy so far */
278
279 /* SUN4/SUN4C SPECIFIC DECLARATIONS */
280
281 #if defined(SUN4) || defined(SUN4C)
282 bool pmap_clear_modify4_4c(struct vm_page *);
283 bool pmap_clear_reference4_4c(struct vm_page *);
284 void pmap_copy_page4_4c(paddr_t, paddr_t);
285 int pmap_enter4_4c(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
286 bool pmap_extract4_4c(pmap_t, vaddr_t, paddr_t *);
287 bool pmap_is_modified4_4c(struct vm_page *);
288 bool pmap_is_referenced4_4c(struct vm_page *);
289 void pmap_kenter_pa4_4c(vaddr_t, paddr_t, vm_prot_t, u_int);
290 void pmap_kremove4_4c(vaddr_t, vsize_t);
291 void pmap_kprotect4_4c(vaddr_t, vsize_t, vm_prot_t);
292 void pmap_page_protect4_4c(struct vm_page *, vm_prot_t);
293 void pmap_protect4_4c(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
294 void pmap_zero_page4_4c(paddr_t);
295 #endif /* defined SUN4 || defined SUN4C */
296
297 /* SIMILAR DECLARATIONS FOR SUN4M/SUN4D MODULE */
298
299 #if defined(SUN4M) || defined(SUN4D)
300 bool pmap_clear_modify4m(struct vm_page *);
301 bool pmap_clear_reference4m(struct vm_page *);
302 void pmap_copy_page4m(paddr_t, paddr_t);
303 void pmap_copy_page_viking_mxcc(paddr_t, paddr_t);
304 void pmap_copy_page_hypersparc(paddr_t, paddr_t);
305 int pmap_enter4m(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
306 bool pmap_extract4m(pmap_t, vaddr_t, paddr_t *);
307 bool pmap_is_modified4m(struct vm_page *);
308 bool pmap_is_referenced4m(struct vm_page *);
309 void pmap_kenter_pa4m(vaddr_t, paddr_t, vm_prot_t, u_int);
310 void pmap_kremove4m(vaddr_t, vsize_t);
311 void pmap_kprotect4m(vaddr_t, vsize_t, vm_prot_t);
312 void pmap_page_protect4m(struct vm_page *, vm_prot_t);
313 void pmap_protect4m(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
314 void pmap_zero_page4m(paddr_t);
315 void pmap_zero_page_viking_mxcc(paddr_t);
316 void pmap_zero_page_hypersparc(paddr_t);
317 #endif /* defined SUN4M || defined SUN4D */
318
319 #if !(defined(SUN4M) || defined(SUN4D)) && (defined(SUN4) || defined(SUN4C))
320
321 #define pmap_clear_modify pmap_clear_modify4_4c
322 #define pmap_clear_reference pmap_clear_reference4_4c
323 #define pmap_enter pmap_enter4_4c
324 #define pmap_extract pmap_extract4_4c
325 #define pmap_is_modified pmap_is_modified4_4c
326 #define pmap_is_referenced pmap_is_referenced4_4c
327 #define pmap_kenter_pa pmap_kenter_pa4_4c
328 #define pmap_kremove pmap_kremove4_4c
329 #define pmap_kprotect pmap_kprotect4_4c
330 #define pmap_page_protect pmap_page_protect4_4c
331 #define pmap_protect pmap_protect4_4c
332
333 #elif (defined(SUN4M) || defined(SUN4D)) && !(defined(SUN4) || defined(SUN4C))
334
335 #define pmap_clear_modify pmap_clear_modify4m
336 #define pmap_clear_reference pmap_clear_reference4m
337 #define pmap_enter pmap_enter4m
338 #define pmap_extract pmap_extract4m
339 #define pmap_is_modified pmap_is_modified4m
340 #define pmap_is_referenced pmap_is_referenced4m
341 #define pmap_kenter_pa pmap_kenter_pa4m
342 #define pmap_kremove pmap_kremove4m
343 #define pmap_kprotect pmap_kprotect4m
344 #define pmap_page_protect pmap_page_protect4m
345 #define pmap_protect pmap_protect4m
346
347 #else /* must use function pointers */
348
349 extern bool (*pmap_clear_modify_p)(struct vm_page *);
350 extern bool (*pmap_clear_reference_p)(struct vm_page *);
351 extern int (*pmap_enter_p)(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
352 extern bool (*pmap_extract_p)(pmap_t, vaddr_t, paddr_t *);
353 extern bool (*pmap_is_modified_p)(struct vm_page *);
354 extern bool (*pmap_is_referenced_p)(struct vm_page *);
355 extern void (*pmap_kenter_pa_p)(vaddr_t, paddr_t, vm_prot_t, u_int);
356 extern void (*pmap_kremove_p)(vaddr_t, vsize_t);
357 extern void (*pmap_kprotect_p)(vaddr_t, vsize_t, vm_prot_t);
358 extern void (*pmap_page_protect_p)(struct vm_page *, vm_prot_t);
359 extern void (*pmap_protect_p)(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
360
361 #define pmap_clear_modify (*pmap_clear_modify_p)
362 #define pmap_clear_reference (*pmap_clear_reference_p)
363 #define pmap_enter (*pmap_enter_p)
364 #define pmap_extract (*pmap_extract_p)
365 #define pmap_is_modified (*pmap_is_modified_p)
366 #define pmap_is_referenced (*pmap_is_referenced_p)
367 #define pmap_kenter_pa (*pmap_kenter_pa_p)
368 #define pmap_kremove (*pmap_kremove_p)
369 #define pmap_kprotect (*pmap_kprotect_p)
370 #define pmap_page_protect (*pmap_page_protect_p)
371 #define pmap_protect (*pmap_protect_p)
372
373 #endif
374
375 /* pmap_{zero,copy}_page() may be assisted by specialized hardware */
376 #define pmap_zero_page (*cpuinfo.zero_page)
377 #define pmap_copy_page (*cpuinfo.copy_page)
378
379 #if defined(SUN4M) || defined(SUN4D)
380 /*
381 * Macros which implement SRMMU TLB flushing/invalidation
382 */
383 #define tlb_flush_page_real(va) \
384 sta(((vaddr_t)(va) & 0xfffff000) | ASI_SRMMUFP_L3, ASI_SRMMUFP, 0)
385
386 #define tlb_flush_segment_real(va) \
387 sta(((vaddr_t)(va) & 0xfffc0000) | ASI_SRMMUFP_L2, ASI_SRMMUFP, 0)
388
389 #define tlb_flush_region_real(va) \
390 sta(((vaddr_t)(va) & 0xff000000) | ASI_SRMMUFP_L1, ASI_SRMMUFP, 0)
391
392 #define tlb_flush_context_real() sta(ASI_SRMMUFP_L0, ASI_SRMMUFP, 0)
393 #define tlb_flush_all_real() sta(ASI_SRMMUFP_LN, ASI_SRMMUFP, 0)
394
395 void setpte4m(vaddr_t va, int pte);
396
397 #endif /* SUN4M || SUN4D */
398
399 #define __HAVE_VM_PAGE_MD
400
401 /*
402 * For each managed physical page, there is a list of all currently
403 * valid virtual mappings of that page. Since there is usually one
404 * (or zero) mapping per page, the table begins with an initial entry,
405 * rather than a pointer; this head entry is empty iff its pv_pmap
406 * field is NULL.
407 */
408 struct vm_page_md {
409 struct pvlist {
410 struct pvlist *pv_next; /* next pvlist, if any */
411 struct pmap *pv_pmap; /* pmap of this va */
412 vaddr_t pv_va; /* virtual address */
413 int pv_flags; /* flags (below) */
414 } pvlisthead;
415 };
416 #define VM_MDPAGE_PVHEAD(pg) (&(pg)->mdpage.pvlisthead)
417
418 #define VM_MDPAGE_INIT(pg) do { \
419 (pg)->mdpage.pvlisthead.pv_next = NULL; \
420 (pg)->mdpage.pvlisthead.pv_pmap = NULL; \
421 (pg)->mdpage.pvlisthead.pv_va = 0; \
422 (pg)->mdpage.pvlisthead.pv_flags = 0; \
423 } while(/*CONSTCOND*/0)
424
425 #endif /* _KERNEL */
426
427 #endif /* _SPARC_PMAP_H_ */
428