Home | History | Annotate | Line # | Download | only in include
pte.h revision 1.23
      1 /*	$NetBSD: pte.h,v 1.23 2001/05/01 20:37:44 kleink Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996
      5  * 	The President and Fellows of Harvard College. All rights reserved.
      6  * Copyright (c) 1992, 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This software was developed by the Computer Systems Engineering group
     10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     11  * contributed to Berkeley.
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgements:
     15  * 	This product includes software developed by Harvard University.
     16  *	This product includes software developed by the University of
     17  *	California, Lawrence Berkeley Laboratory.
     18  *
     19  * Redistribution and use in source and binary forms, with or without
     20  * modification, are permitted provided that the following conditions
     21  * are met:
     22  * 1. Redistributions of source code must retain the above copyright
     23  *    notice, this list of conditions and the following disclaimer.
     24  * 2. Redistributions in binary form must reproduce the above copyright
     25  *    notice, this list of conditions and the following disclaimer in the
     26  *    documentation and/or other materials provided with the distribution.
     27  * 3. All advertising materials mentioning features or use of this software
     28  *    must display the following acknowledgements:
     29  *	This product includes software developed by Harvard University.
     30  *	This product includes software developed by the University of
     31  *	California, Berkeley and its contributors.
     32  * 4. Neither the name of the University nor the names of its contributors
     33  *    may be used to endorse or promote products derived from this software
     34  *    without specific prior written permission.
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     46  * SUCH DAMAGE.
     47  *
     48  *	@(#)pte.h	8.1 (Berkeley) 6/11/93
     49  */
     50 
     51 /*
     52  * Sun-4 (sort of), 4c (SparcStation), and 4m Page Table Entries
     53  * (Sun calls them `Page Map Entries').
     54  */
     55 
     56 #ifndef _LOCORE
     57 /*
     58  * Segment maps contain `pmeg' (Page Map Entry Group) numbers.
     59  * A PMEG is simply an index that names a group of 32 (sun4) or
     60  * 64 (sun4c) PTEs.
     61  * Depending on the CPU model, we need 7 (sun4c) to 10 (sun4/400) bits
     62  * to hold the hardware MMU resource number.
     63  */
     64 typedef u_short pmeg_t;		/* 10 bits needed per Sun-4 segmap entry */
     65 /*
     66  * Region maps contain `smeg' (Segment Entry Group) numbers.
     67  * An SMEG is simply an index that names a group of 64 PMEGs.
     68  */
     69 typedef u_char smeg_t;		/* 8 bits needed per Sun-4 regmap entry */
     70 #endif
     71 
     72 /*
     73  * Address translation works as follows:
     74  *
     75  * (for sun4c and 2-level sun4)
     76  *	1. test va<31:29> -- these must be 000 or 111 (or you get a fault)
     77  *	2. concatenate context_reg<2:0> and va<29:18> to get a 15 bit number;
     78  *	   use this to index the segment maps, yielding a 7 or 9 bit value.
     79  * (for 3-level sun4)
     80  *	1. concatenate context_reg<3:0> and va<31:24> to get a 8 bit number;
     81  *	   use this to index the region maps, yielding a 10 bit value.
     82  *	2. take the value from (1) above and concatenate va<17:12> to
     83  *	   get a `segment map entry' index.  This gives a 9 bit value.
     84  * (for sun4c)
     85  *	3. take the value from (2) above and concatenate va<17:12> to
     86  *	   get a `page map entry' index.  This gives a 32-bit PTE.
     87  * (for sun4)
     88  *	3. take the value from (2 or 3) above and concatenate va<17:13> to
     89  *	   get a `page map entry' index.  This gives a 32-bit PTE.
     90  **
     91  * For sun4m:
     92  *	1. Use context_reg<3:0> to index the context table (located at
     93  *	   (context_reg << 2) | ((ctx_tbl_ptr_reg >> 2) << 6) ). This
     94  *	   gives a 32-bit page-table-descriptor (PTP).
     95  *	2. Use va<31:24> to index the region table located by the PTP from (1):
     96  *	   PTP<31:6> << 10. This gives another PTP for the segment tables
     97  *	3. Use va<23:18> to index the segment table located by the PTP from (2)
     98  *	   as follows: PTP<31:4> << 8. This gives another PTP for the page tbl.
     99  * 	4. Use va<17:12> to index the page table given by (3)'s PTP:
    100  * 	   PTP<31:4> << 8. This gives a 32-bit PTE.
    101  *
    102  * In other words:
    103  *
    104  *	struct sun4_3_levelmmu_virtual_addr {
    105  *		u_int	va_reg:8,	(virtual region)
    106  *			va_seg:6,	(virtual segment)
    107  *			va_pg:5,	(virtual page within segment)
    108  *			va_off:13;	(offset within page)
    109  *	};
    110  *	struct sun4_virtual_addr {
    111  *		u_int	:2,		(required to be the same as bit 29)
    112  *			va_seg:12,	(virtual segment)
    113  *			va_pg:5,	(virtual page within segment)
    114  *			va_off:13;	(offset within page)
    115  *	};
    116  *	struct sun4c_virtual_addr {
    117  *		u_int	:2,		(required to be the same as bit 29)
    118  *			va_seg:12,	(virtual segment)
    119  *			va_pg:6,	(virtual page within segment)
    120  *			va_off:12;	(offset within page)
    121  *	};
    122  *
    123  *	struct sun4m_virtual_addr {
    124  *		u_int	va_reg:8,	(virtual region)
    125  *			va_seg:6,	(virtual segment within region)
    126  *			va_pg:6,	(virtual page within segment)
    127  *			va_off:12;	(offset within page)
    128  *	};
    129  *
    130  * Then, given any `va':
    131  *
    132  *	extern smeg_t regmap[16][1<<8];		(3-level MMU only)
    133  *	extern pmeg_t segmap[8][1<<12];		([16][1<<12] for sun4)
    134  *	extern int ptetable[128][1<<6];		([512][1<<5] for sun4)
    135  *
    136  *	extern u_int  s4m_ctxmap[16];		(sun4m SRMMU only)
    137  *	extern u_int  s4m_regmap[16][1<<8];	(sun4m SRMMU only)
    138  * 	extern u_int  s4m_segmap[1<<8][1<<6];	(sun4m SRMMU only)
    139  * 	extern u_int  s4m_pagmap[1<<14][1<<6];	(sun4m SRMMU only)
    140  *
    141  * (the above being in the hardware, accessed as Alternate Address Spaces on
    142  *  all machines but the Sun4m SRMMU, in which case the tables are in physical
    143  *  kernel memory. In the 4m architecture, the tables are not layed out as
    144  *  2-dim arrays, but are sparsely allocated as needed, and point to each
    145  *  other.)
    146  *
    147  *	if (cputyp==CPU_SUN4M) 		// SPARC Reference MMU
    148  *		regptp = s4m_ctxmap[curr_ctx];
    149  *		if (!(regptp & SRMMU_TEPTD)) TRAP();
    150  *		segptp = *(u_int *)(((regptp & ~0x3) << 4) | va.va_reg);
    151  *		if (!(segptp & SRMMU_TEPTD)) TRAP();
    152  *		pagptp = *(u_int *)(((segptp & ~0x3) << 4) | va.va_seg);
    153  *		if (!(pagptp & SRMMU_TEPTD)) TRAP();
    154  *		pte = *(u_int *)(((pagptp & ~0x3) << 4) | va.va_pg);
    155  *		if (!(pte & SRMMU_TEPTE)) TRAP();       // like PG_V
    156  * 		if (usermode && PTE_PROT_LEVEL(pte) > 0x5) TRAP();
    157  *		if (writing && !PTE_PROT_LEVEL_ALLOWS_WRITING(pte)) TRAP();
    158  *		if (!(pte & SRMMU_PG_C)) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
    159  *		pte |= SRMMU_PG_U;
    160  * 		if (writing) pte |= PG_M;
    161  * 		physaddr = ((pte & SRMMU_PG_PFNUM) << SRMMU_PGSHIFT)|va.va_off;
    162  *		return;
    163  *	if (mmu_3l)
    164  *		physreg = regmap[curr_ctx][va.va_reg];
    165  *		physseg = segmap[physreg][va.va_seg];
    166  *	else
    167  *		physseg = segmap[curr_ctx][va.va_seg];
    168  *	pte = ptetable[physseg][va.va_pg];
    169  *	if (!(pte & PG_V)) TRAP();
    170  *	if (writing && !pte.pg_w) TRAP();
    171  *	if (usermode && pte.pg_s) TRAP();
    172  *	if (pte & PG_NC) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
    173  *	pte |= PG_U;					(mark used/accessed)
    174  *	if (writing) pte |= PG_M;			(mark modified)
    175  *	ptetable[physseg][va.va_pg] = pte;
    176  *	physadr = ((pte & PG_PFNUM) << PGSHIFT) | va.va_off;
    177  */
    178 
    179 #if defined(SUN4_MMU3L) && !defined(SUN4)
    180 #error "configuration error"
    181 #endif
    182 
    183 #define	NBPRG	(1 << 24)	/* bytes per region */
    184 #define	RGSHIFT	24		/* log2(NBPRG) */
    185 #define	RGOFSET	(NBPRG - 1)	/* mask for region offset */
    186 #define NSEGRG	(NBPRG / NBPSG)	/* segments per region */
    187 
    188 #define	NBPSG	(1 << 18)	/* bytes per segment */
    189 #define	SGSHIFT	18		/* log2(NBPSG) */
    190 #define	SGOFSET	(NBPSG - 1)	/* mask for segment offset */
    191 
    192 /* number of PTEs that map one segment (not number that fit in one segment!) */
    193 #if defined(SUN4) && (defined(SUN4C) || defined(SUN4M))
    194 extern int nptesg;
    195 #define	NPTESG	nptesg		/* (which someone will have to initialize) */
    196 #else
    197 #define	NPTESG	(NBPSG / NBPG)
    198 #endif
    199 
    200 /* virtual address to virtual region number */
    201 #define	VA_VREG(va)	(((unsigned int)(va) >> RGSHIFT) & 255)
    202 
    203 /* virtual address to virtual segment number */
    204 #define	VA_VSEG(va)	(((unsigned int)(va) >> SGSHIFT) & 63)
    205 
    206 /* virtual address to virtual page number, for Sun-4 and Sun-4c */
    207 #define	VA_SUN4_VPG(va)		(((int)(va) >> 13) & 31)
    208 #define	VA_SUN4C_VPG(va)	(((int)(va) >> 12) & 63)
    209 #define VA_SUN4M_VPG(va)	(((int)(va) >> 12) & 63)
    210 
    211 /* virtual address to offset within page */
    212 #define VA_SUN4_OFF(va)       	(((int)(va)) & 0x1FFF)
    213 #define VA_SUN4C_OFF(va)     	(((int)(va)) & 0xFFF)
    214 #define VA_SUN4M_OFF(va)	(((int)(va)) & 0xFFF)
    215 
    216 /* truncate virtual address to region base */
    217 #define	VA_ROUNDDOWNTOREG(va)	((int)(va) & ~RGOFSET)
    218 
    219 /* truncate virtual address to segment base */
    220 #define	VA_ROUNDDOWNTOSEG(va)	((int)(va) & ~SGOFSET)
    221 
    222 /* virtual segment to virtual address (must sign extend on holy MMUs!) */
    223 #define	VRTOVA(vr)	((CPU_ISSUN4M || HASSUN4_MMU3L)	\
    224 	? ((int)(vr) << RGSHIFT)			\
    225 	: (((int)(vr) << (RGSHIFT+2)) >> 2))
    226 #define	VSTOVA(vr,vs)	((CPU_ISSUN4M || HASSUN4_MMU3L)	\
    227 	? (((int)(vr) << RGSHIFT) + ((int)(vs) << SGSHIFT))	\
    228 	: ((((int)(vr) << (RGSHIFT+2)) >> 2) + ((int)(vs) << SGSHIFT)))
    229 
    230 extern int mmu_has_hole;
    231 #define VA_INHOLE(va)	(mmu_has_hole \
    232 	? ( (unsigned int)(((int)(va) >> PG_VSHIFT) + 1) > 1) \
    233 	: 0)
    234 
    235 /* Define the virtual address space hole */
    236 #define MMU_HOLE_START	0x20000000
    237 #define MMU_HOLE_END	0xe0000000
    238 
    239 #if defined(SUN4M)		/* Optimization: sun4m, sun4c have same page */
    240 #if defined(SUN4)		/* size, so they're used interchangeably */
    241 #define VA_VPG(va)	(cputyp==CPU_SUN4 ? VA_SUN4_VPG(va) : VA_SUN4C_VPG(va))
    242 #define VA_OFF(va)	(cputyp==CPU_SUN4 ? VA_SUN4_OFF(va) : VA_SUN4C_OFF(va))
    243 #else
    244 #define VA_VPG(va)	VA_SUN4M_VPG(va)
    245 #define VA_OFF(va)	VA_SUN4M_OFF(va)
    246 #endif /* defined SUN4 */
    247 #else /* 4m not defined */
    248 #if defined(SUN4) && defined(SUN4C)
    249 #define VA_VPG(va)	(cputyp==CPU_SUN4C ? VA_SUN4C_VPG(va) : VA_SUN4_VPG(va))
    250 #define VA_OFF(va)	(cputyp==CPU_SUN4C ? VA_SUN4C_OFF(va) : VA_SUN4_OFF(va))
    251 #endif
    252 #if defined(SUN4C) && !defined(SUN4)
    253 #define VA_VPG(va)	VA_SUN4C_VPG(va)
    254 #define VA_OFF(va)	VA_SUN4C_OFF(va)
    255 #endif
    256 #if !defined(SUN4C) && defined(SUN4)
    257 #define	VA_VPG(va)	VA_SUN4_VPG(va)
    258 #define VA_OFF(va)	VA_SUN4_OFF(va)
    259 #endif
    260 #endif /* defined 4m */
    261 
    262 /* there is no `struct pte'; we just use `int'; this is for non-4M only */
    263 #define	PG_V		0x80000000
    264 #define	PG_PROT		0x60000000	/* both protection bits */
    265 #define	PG_W		0x40000000	/* allowed to write */
    266 #define	PG_S		0x20000000	/* supervisor only */
    267 #define	PG_NC		0x10000000	/* non-cacheable */
    268 #define	PG_TYPE		0x0c000000	/* both type bits */
    269 
    270 #define	PG_OBMEM	0x00000000	/* on board memory */
    271 #define	PG_OBIO		0x04000000	/* on board I/O (incl. Sbus on 4c) */
    272 #define	PG_VME16	0x08000000	/* 16-bit-data VME space */
    273 #define	PG_VME32	0x0c000000	/* 32-bit-data VME space */
    274 #if defined(SUN4M)
    275 #define PG_SUN4M_OBMEM	0x0	       	/* No type bits=>obmem on 4m */
    276 #define PG_SUN4M_OBIO	0xf		/* obio maps to 0xf on 4M */
    277 #define SRMMU_PGTYPE	0xf0000000	/* Top 4 bits of pte PPN give type */
    278 #endif
    279 
    280 #define	PG_U		0x02000000
    281 #define	PG_M		0x01000000
    282 #define PG_IOC		0x00800000
    283 #define	PG_MBZ		0x00780000	/* unused; must be zero (oh really?) */
    284 #define	PG_PFNUM	0x0007ffff	/* n.b.: only 16 bits on sun4c */
    285 
    286 #define	PG_TNC_SHIFT	26		/* shift to get PG_TYPE + PG_NC */
    287 #define	PG_M_SHIFT	24		/* shift to get PG_M, PG_U */
    288 #define PG_M_SHIFT4M	5		/* shift to get SRMMU_PG_M,R on 4m */
    289 /*efine	PG_NOACC	0		** XXX */
    290 #define	PG_KR		0x20000000
    291 #define	PG_KW		0x60000000
    292 #define	PG_URKR		0
    293 #define	PG_UW		0x40000000
    294 
    295 #ifdef KGDB
    296 /* but we will define one for gdb anyway */
    297 struct pte {
    298 	u_int	pg_v:1,
    299 		pg_w:1,
    300 		pg_s:1,
    301 		pg_nc:1;
    302 	enum pgtype { pg_obmem, pg_obio, pg_vme16, pg_vme32 } pg_type:2;
    303 	u_int	pg_u:1,
    304 		pg_m:1,
    305 		pg_mbz:5,
    306 		pg_pfnum:19;
    307 };
    308 #if defined(SUN4M)
    309 struct srmmu_pte {
    310 	u_int	pg_pfnum:20,
    311 		pg_c:1,
    312 		pg_m:1,
    313 		pg_u:1;
    314 	enum pgprot { pprot_r_r, pprot_rw_rw, pprot_rx_rx, pprot_rwx_rwx,
    315 		      pprot_x_x, pprot_r_rw, pprot_n_rx, pprot_n_rwx }
    316 		pg_prot:3;	/* prot. bits: pprot_<user>_<supervisor> */
    317 	u_int	pg_must_be_2:2;
    318 };
    319 #endif
    320 #endif
    321 
    322 /*
    323  * These are needed in the register window code
    324  * to check the validity of (ostensible) user stack PTEs.
    325  */
    326 #define	PG_VSHIFT	29		/* (va>>vshift)==0 or -1 => valid */
    327 	/* XXX fix this name, it is a va shift not a pte bit shift! */
    328 
    329 #define	PG_PROTSHIFT	29
    330 #define	PG_PROTUWRITE	6		/* PG_V,PG_W,!PG_S */
    331 #define	PG_PROTUREAD	4		/* PG_V,!PG_W,!PG_S */
    332 
    333 /* %%%: Fix above and below for 4m? */
    334 
    335 /* static __inline int PG_VALID(void *va) {
    336 	register int t = va; t >>= PG_VSHIFT; return (t == 0 || t == -1);
    337 } */
    338 
    339 
    340 /*
    341  * Here are the bit definitions for 4M/SRMMU pte's
    342  */
    343 		/* MMU TABLE ENTRIES */
    344 #define SRMMU_TEINVALID	0x0		/* invalid (serves as !valid bit) */
    345 #define	SRMMU_TEPTD	0x1		/* Page Table Descriptor */
    346 #define SRMMU_TEPTE	0x2		/* Page Table Entry */
    347 #define SRMMU_TERES	0x3		/* reserved */
    348 #define SRMMU_TETYPE	0x3		/* mask for table entry type */
    349 		/* PTE FIELDS */
    350 #define SRMMU_PPNMASK	0xFFFFFF00
    351 #define SRMMU_PPNSHIFT	0x8
    352 #define SRMMU_PPNPASHIFT 0x4 		/* shift to put ppn into PAddr */
    353 #define SRMMU_L1PPNSHFT	0x14
    354 #define SRMMU_L1PPNMASK	0xFFF00000
    355 #define SRMMU_L2PPNSHFT 0xE
    356 #define SRMMU_L2PPNMASK	0xFC000
    357 #define SRMMU_L3PPNSHFT	0x8
    358 #define SRMMU_L3PPNMASK 0x3F00
    359 		/* PTE BITS */
    360 #define SRMMU_PG_C	0x80		/* cacheable */
    361 #define SRMMU_PG_M	0x40		/* modified (dirty) */
    362 #define SRMMU_PG_R	0x20		/* referenced */
    363 #define SRMMU_PGBITSMSK	0xE0
    364 		/* PTE PROTECTION */
    365 #define SRMMU_PROT_MASK	0x1C		/* Mask protection bits out of pte */
    366 #define SRMMU_PROT_SHFT	0x2
    367 #define PPROT_R_R	0x0		/* These are in the form:	*/
    368 #define PPROT_RW_RW	0x4		/* 	PPROT_<u>_<s>		*/
    369 #define PPROT_RX_RX	0x8		/* where <u> is the user-mode	*/
    370 #define PPROT_RWX_RWX	0xC		/* permission, and <s> is the 	*/
    371 #define PPROT_X_X	0x10		/* supervisor mode permission.	*/
    372 #define PPROT_R_RW	0x14		/* R=read, W=write, X=execute	*/
    373 #define PPROT_N_RX	0x18		/* N=none.			*/
    374 #define PPROT_N_RWX	0x1C
    375 #define PPROT_WRITE	0x4		/* set iff write priv. allowed  */
    376 #define PPROT_S		0x18		/* effective S bit */
    377 #define PPROT_U2S_OMASK 0x18		/* OR with prot. to revoke user priv */
    378 		/* TABLE SIZES */
    379 #define SRMMU_L1SIZE	0x100
    380 #define SRMMU_L2SIZE 	0x40
    381 #define SRMMU_L3SIZE	0x40
    382 
    383 #define SRMMU_PTE_BITS	"\177\020"					\
    384 	"f\0\2TYPE\0=\1PTD\0=\2PTE\0f\2\3PROT\0"			\
    385 	"=\0R_R\0=\4RW_RW\0=\10RX_RX\0=\14RWX_RWX\0=\20X_X\0=\24R_RW\0"	\
    386 	"=\30N_RX\0=\34N_RWX\0"						\
    387 	"b\5R\0b\6M\0b\7C\0f\10\30PFN\0"
    388 
    389 /*
    390  * IOMMU PTE bits.
    391  */
    392 #define IOPTE_PPN_MASK  0x07ffff00
    393 #define IOPTE_PPN_SHIFT 8
    394 #define IOPTE_RSVD      0x000000f1
    395 #define IOPTE_WRITE     0x00000004
    396 #define IOPTE_VALID     0x00000002
    397 
    398 #define IOMMU_PTE_BITS	"\177\020"					\
    399 	"f\10\23PPN\0b\2W\0b\1V\0"
    400 
    401 
    402 #if defined(_KERNEL) || defined(_STANDALONE)
    403 /*
    404  * Macros to get and set the processor context.
    405  */
    406 #define getcontext4()		lduba(AC_CONTEXT, ASI_CONTROL)
    407 #define getcontext4m()		lda(SRMMU_CXR, ASI_SRMMU)
    408 #define getcontext()		(CPU_ISSUN4M ? getcontext4m() : getcontext4())
    409 
    410 #define setcontext4(c)		stba(AC_CONTEXT, ASI_CONTROL, c)
    411 #define setcontext4m(c)		sta(SRMMU_CXR, ASI_SRMMU, c)
    412 #define setcontext(c)		(CPU_ISSUN4M ? setcontext4m(c) : setcontext4(c))
    413 
    414 /* sun4/sun4c access to MMU-resident PTEs */
    415 #define	getpte4(va)		lda(va, ASI_PTE)
    416 #define	setpte4(va, pte)	sta(va, ASI_PTE, pte)
    417 
    418 /* sun4m TLB probe */
    419 #define getpte4m(va)		lda((va & 0xFFFFF000) | ASI_SRMMUFP_L3, \
    420 				    ASI_SRMMUFP)
    421 
    422 #endif /* _KERNEL || _STANDALONE */
    423