pte.h revision 1.25 1 /* $NetBSD: pte.h,v 1.25 2002/07/18 02:32:35 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1996
5 * The President and Fellows of Harvard College. All rights reserved.
6 * Copyright (c) 1992, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * This software was developed by the Computer Systems Engineering group
10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
11 * contributed to Berkeley.
12 *
13 * All advertising materials mentioning features or use of this software
14 * must display the following acknowledgements:
15 * This product includes software developed by Harvard University.
16 * This product includes software developed by the University of
17 * California, Lawrence Berkeley Laboratory.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. All advertising materials mentioning features or use of this software
28 * must display the following acknowledgements:
29 * This product includes software developed by Harvard University.
30 * This product includes software developed by the University of
31 * California, Berkeley and its contributors.
32 * 4. Neither the name of the University nor the names of its contributors
33 * may be used to endorse or promote products derived from this software
34 * without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46 * SUCH DAMAGE.
47 *
48 * @(#)pte.h 8.1 (Berkeley) 6/11/93
49 */
50
51 #if defined(_KERNEL_OPT)
52 #include "opt_sparc_arch.h"
53 #endif
54
55 /*
56 * Sun-4 (sort of), 4c (SparcStation), and 4m Page Table Entries
57 * (Sun calls them `Page Map Entries').
58 */
59
60 #ifndef _LOCORE
61 /*
62 * Segment maps contain `pmeg' (Page Map Entry Group) numbers.
63 * A PMEG is simply an index that names a group of 32 (sun4) or
64 * 64 (sun4c) PTEs.
65 * Depending on the CPU model, we need 7 (sun4c) to 10 (sun4/400) bits
66 * to hold the hardware MMU resource number.
67 */
68 typedef u_short pmeg_t; /* 10 bits needed per Sun-4 segmap entry */
69 /*
70 * Region maps contain `smeg' (Segment Entry Group) numbers.
71 * An SMEG is simply an index that names a group of 64 PMEGs.
72 */
73 typedef u_char smeg_t; /* 8 bits needed per Sun-4 regmap entry */
74 #endif
75
76 /*
77 * Address translation works as follows:
78 *
79 * (for sun4c and 2-level sun4)
80 * 1. test va<31:29> -- these must be 000 or 111 (or you get a fault)
81 * 2. concatenate context_reg<2:0> and va<29:18> to get a 15 bit number;
82 * use this to index the segment maps, yielding a 7 or 9 bit value.
83 * (for 3-level sun4)
84 * 1. concatenate context_reg<3:0> and va<31:24> to get a 8 bit number;
85 * use this to index the region maps, yielding a 10 bit value.
86 * 2. take the value from (1) above and concatenate va<17:12> to
87 * get a `segment map entry' index. This gives a 9 bit value.
88 * (for sun4c)
89 * 3. take the value from (2) above and concatenate va<17:12> to
90 * get a `page map entry' index. This gives a 32-bit PTE.
91 * (for sun4)
92 * 3. take the value from (2 or 3) above and concatenate va<17:13> to
93 * get a `page map entry' index. This gives a 32-bit PTE.
94 **
95 * For sun4m:
96 * 1. Use context_reg<3:0> to index the context table (located at
97 * (context_reg << 2) | ((ctx_tbl_ptr_reg >> 2) << 6) ). This
98 * gives a 32-bit page-table-descriptor (PTP).
99 * 2. Use va<31:24> to index the region table located by the PTP from (1):
100 * PTP<31:6> << 10. This gives another PTP for the segment tables
101 * 3. Use va<23:18> to index the segment table located by the PTP from (2)
102 * as follows: PTP<31:4> << 8. This gives another PTP for the page tbl.
103 * 4. Use va<17:12> to index the page table given by (3)'s PTP:
104 * PTP<31:4> << 8. This gives a 32-bit PTE.
105 *
106 * In other words:
107 *
108 * struct sun4_3_levelmmu_virtual_addr {
109 * u_int va_reg:8, (virtual region)
110 * va_seg:6, (virtual segment)
111 * va_pg:5, (virtual page within segment)
112 * va_off:13; (offset within page)
113 * };
114 * struct sun4_virtual_addr {
115 * u_int :2, (required to be the same as bit 29)
116 * va_seg:12, (virtual segment)
117 * va_pg:5, (virtual page within segment)
118 * va_off:13; (offset within page)
119 * };
120 * struct sun4c_virtual_addr {
121 * u_int :2, (required to be the same as bit 29)
122 * va_seg:12, (virtual segment)
123 * va_pg:6, (virtual page within segment)
124 * va_off:12; (offset within page)
125 * };
126 *
127 * struct sun4m_virtual_addr {
128 * u_int va_reg:8, (virtual region)
129 * va_seg:6, (virtual segment within region)
130 * va_pg:6, (virtual page within segment)
131 * va_off:12; (offset within page)
132 * };
133 *
134 * Then, given any `va':
135 *
136 * extern smeg_t regmap[16][1<<8]; (3-level MMU only)
137 * extern pmeg_t segmap[8][1<<12]; ([16][1<<12] for sun4)
138 * extern int ptetable[128][1<<6]; ([512][1<<5] for sun4)
139 *
140 * extern u_int s4m_ctxmap[16]; (sun4m SRMMU only)
141 * extern u_int s4m_regmap[16][1<<8]; (sun4m SRMMU only)
142 * extern u_int s4m_segmap[1<<8][1<<6]; (sun4m SRMMU only)
143 * extern u_int s4m_pagmap[1<<14][1<<6]; (sun4m SRMMU only)
144 *
145 * (the above being in the hardware, accessed as Alternate Address Spaces on
146 * all machines but the Sun4m SRMMU, in which case the tables are in physical
147 * kernel memory. In the 4m architecture, the tables are not layed out as
148 * 2-dim arrays, but are sparsely allocated as needed, and point to each
149 * other.)
150 *
151 * if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4D) // SPARC Reference MMU
152 * regptp = s4m_ctxmap[curr_ctx];
153 * if (!(regptp & SRMMU_TEPTD)) TRAP();
154 * segptp = *(u_int *)(((regptp & ~0x3) << 4) | va.va_reg);
155 * if (!(segptp & SRMMU_TEPTD)) TRAP();
156 * pagptp = *(u_int *)(((segptp & ~0x3) << 4) | va.va_seg);
157 * if (!(pagptp & SRMMU_TEPTD)) TRAP();
158 * pte = *(u_int *)(((pagptp & ~0x3) << 4) | va.va_pg);
159 * if (!(pte & SRMMU_TEPTE)) TRAP(); // like PG_V
160 * if (usermode && PTE_PROT_LEVEL(pte) > 0x5) TRAP();
161 * if (writing && !PTE_PROT_LEVEL_ALLOWS_WRITING(pte)) TRAP();
162 * if (!(pte & SRMMU_PG_C)) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
163 * pte |= SRMMU_PG_U;
164 * if (writing) pte |= PG_M;
165 * physaddr = ((pte & SRMMU_PG_PFNUM) << SRMMU_PGSHIFT)|va.va_off;
166 * return;
167 * if (mmu_3l)
168 * physreg = regmap[curr_ctx][va.va_reg];
169 * physseg = segmap[physreg][va.va_seg];
170 * else
171 * physseg = segmap[curr_ctx][va.va_seg];
172 * pte = ptetable[physseg][va.va_pg];
173 * if (!(pte & PG_V)) TRAP();
174 * if (writing && !pte.pg_w) TRAP();
175 * if (usermode && pte.pg_s) TRAP();
176 * if (pte & PG_NC) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
177 * pte |= PG_U; (mark used/accessed)
178 * if (writing) pte |= PG_M; (mark modified)
179 * ptetable[physseg][va.va_pg] = pte;
180 * physadr = ((pte & PG_PFNUM) << PGSHIFT) | va.va_off;
181 */
182
183 #if defined(SUN4_MMU3L) && !defined(SUN4)
184 #error "configuration error"
185 #endif
186
187 #define NBPRG (1 << 24) /* bytes per region */
188 #define RGSHIFT 24 /* log2(NBPRG) */
189 #define RGOFSET (NBPRG - 1) /* mask for region offset */
190 #define NSEGRG (NBPRG / NBPSG) /* segments per region */
191
192 #define NBPSG (1 << 18) /* bytes per segment */
193 #define SGSHIFT 18 /* log2(NBPSG) */
194 #define SGOFSET (NBPSG - 1) /* mask for segment offset */
195
196 /* number of PTEs that map one segment (not number that fit in one segment!) */
197 #if defined(SUN4) && (defined(SUN4C) || defined(SUN4M) || defined(SUN4D))
198 extern int nptesg;
199 #define NPTESG nptesg /* (which someone will have to initialize) */
200 #else
201 #define NPTESG (NBPSG / NBPG)
202 #endif
203
204 /* virtual address to virtual region number */
205 #define VA_VREG(va) (((unsigned int)(va) >> RGSHIFT) & 255)
206
207 /* virtual address to virtual segment number */
208 #define VA_VSEG(va) (((unsigned int)(va) >> SGSHIFT) & 63)
209
210 /* virtual address to virtual page number, for Sun-4 and Sun-4c */
211 #define VA_SUN4_VPG(va) (((int)(va) >> 13) & 31)
212 #define VA_SUN4C_VPG(va) (((int)(va) >> 12) & 63)
213 #define VA_SUN4M_VPG(va) (((int)(va) >> 12) & 63)
214
215 /* virtual address to offset within page */
216 #define VA_SUN4_OFF(va) (((int)(va)) & 0x1FFF)
217 #define VA_SUN4C_OFF(va) (((int)(va)) & 0xFFF)
218 #define VA_SUN4M_OFF(va) (((int)(va)) & 0xFFF)
219
220 /* truncate virtual address to region base */
221 #define VA_ROUNDDOWNTOREG(va) ((int)(va) & ~RGOFSET)
222
223 /* truncate virtual address to segment base */
224 #define VA_ROUNDDOWNTOSEG(va) ((int)(va) & ~SGOFSET)
225
226 /* virtual segment to virtual address (must sign extend on holy MMUs!) */
227 #define VRTOVA(vr) ((CPU_HAS_SRMMU || HASSUN4_MMU3L) \
228 ? ((int)(vr) << RGSHIFT) \
229 : (((int)(vr) << (RGSHIFT+2)) >> 2))
230 #define VSTOVA(vr,vs) ((CPU_HAS_SRMMU || HASSUN4_MMU3L) \
231 ? (((int)(vr) << RGSHIFT) + ((int)(vs) << SGSHIFT)) \
232 : ((((int)(vr) << (RGSHIFT+2)) >> 2) + ((int)(vs) << SGSHIFT)))
233
234 extern int mmu_has_hole;
235 #define VA_INHOLE(va) (mmu_has_hole \
236 ? ( (unsigned int)(((int)(va) >> PG_VSHIFT) + 1) > 1) \
237 : 0)
238
239 /* Define the virtual address space hole */
240 #define MMU_HOLE_START 0x20000000
241 #define MMU_HOLE_END 0xe0000000
242
243 #if defined(SUN4M) || defined(SUN4D) /* Optimization: sun4m, sun4d, sun4c
244 have same page size, so they're
245 used interchangeably */
246 #if defined(SUN4)
247 #define VA_VPG(va) (cputyp==CPU_SUN4 ? VA_SUN4_VPG(va) : VA_SUN4C_VPG(va))
248 #define VA_OFF(va) (cputyp==CPU_SUN4 ? VA_SUN4_OFF(va) : VA_SUN4C_OFF(va))
249 #else
250 #define VA_VPG(va) VA_SUN4M_VPG(va)
251 #define VA_OFF(va) VA_SUN4M_OFF(va)
252 #endif /* defined SUN4 */
253 #else /* 4m/4d not defined */
254 #if defined(SUN4) && defined(SUN4C)
255 #define VA_VPG(va) (cputyp==CPU_SUN4C ? VA_SUN4C_VPG(va) : VA_SUN4_VPG(va))
256 #define VA_OFF(va) (cputyp==CPU_SUN4C ? VA_SUN4C_OFF(va) : VA_SUN4_OFF(va))
257 #endif
258 #if defined(SUN4C) && !defined(SUN4)
259 #define VA_VPG(va) VA_SUN4C_VPG(va)
260 #define VA_OFF(va) VA_SUN4C_OFF(va)
261 #endif
262 #if !defined(SUN4C) && defined(SUN4)
263 #define VA_VPG(va) VA_SUN4_VPG(va)
264 #define VA_OFF(va) VA_SUN4_OFF(va)
265 #endif
266 #endif /* defined 4m */
267
268 /* there is no `struct pte'; we just use `int'; this is for non-4M only */
269 #define PG_V 0x80000000
270 #define PG_PROT 0x60000000 /* both protection bits */
271 #define PG_W 0x40000000 /* allowed to write */
272 #define PG_S 0x20000000 /* supervisor only */
273 #define PG_NC 0x10000000 /* non-cacheable */
274 #define PG_TYPE 0x0c000000 /* both type bits */
275
276 #define PG_OBMEM 0x00000000 /* on board memory */
277 #define PG_OBIO 0x04000000 /* on board I/O (incl. Sbus on 4c) */
278 #define PG_VME16 0x08000000 /* 16-bit-data VME space */
279 #define PG_VME32 0x0c000000 /* 32-bit-data VME space */
280 #if defined(SUN4M) || defined(SUN4D)
281 #define PG_SUN4M_OBMEM 0x0 /* No type bits=>obmem on 4m */
282 #define PG_SUN4M_OBIO 0xf /* obio maps to 0xf on 4M */
283 #define SRMMU_PGTYPE 0xf0000000 /* Top 4 bits of pte PPN give type */
284 #endif
285
286 #define PG_U 0x02000000
287 #define PG_M 0x01000000
288 #define PG_IOC 0x00800000
289 #define PG_MBZ 0x00780000 /* unused; must be zero (oh really?) */
290 #define PG_PFNUM 0x0007ffff /* n.b.: only 16 bits on sun4c */
291
292 #define PG_TNC_SHIFT 26 /* shift to get PG_TYPE + PG_NC */
293 #define PG_M_SHIFT 24 /* shift to get PG_M, PG_U */
294 #define PG_M_SHIFT4M 5 /* shift to get SRMMU_PG_M,R on 4m */
295 /*efine PG_NOACC 0 ** XXX */
296 #define PG_KR 0x20000000
297 #define PG_KW 0x60000000
298 #define PG_URKR 0
299 #define PG_UW 0x40000000
300
301 #ifdef KGDB
302 /* but we will define one for gdb anyway */
303 struct pte {
304 u_int pg_v:1,
305 pg_w:1,
306 pg_s:1,
307 pg_nc:1;
308 enum pgtype { pg_obmem, pg_obio, pg_vme16, pg_vme32 } pg_type:2;
309 u_int pg_u:1,
310 pg_m:1,
311 pg_mbz:5,
312 pg_pfnum:19;
313 };
314 #if defined(SUN4M) || defined(SUN4D)
315 struct srmmu_pte {
316 u_int pg_pfnum:20,
317 pg_c:1,
318 pg_m:1,
319 pg_u:1;
320 enum pgprot { pprot_r_r, pprot_rw_rw, pprot_rx_rx, pprot_rwx_rwx,
321 pprot_x_x, pprot_r_rw, pprot_n_rx, pprot_n_rwx }
322 pg_prot:3; /* prot. bits: pprot_<user>_<supervisor> */
323 u_int pg_must_be_2:2;
324 };
325 #endif
326 #endif
327
328 /*
329 * These are needed in the register window code
330 * to check the validity of (ostensible) user stack PTEs.
331 */
332 #define PG_VSHIFT 29 /* (va>>vshift)==0 or -1 => valid */
333 /* XXX fix this name, it is a va shift not a pte bit shift! */
334
335 #define PG_PROTSHIFT 29
336 #define PG_PROTUWRITE 6 /* PG_V,PG_W,!PG_S */
337 #define PG_PROTUREAD 4 /* PG_V,!PG_W,!PG_S */
338
339 /* %%%: Fix above and below for 4m? */
340
341 /* static __inline int PG_VALID(void *va) {
342 register int t = va; t >>= PG_VSHIFT; return (t == 0 || t == -1);
343 } */
344
345
346 /*
347 * Here are the bit definitions for 4M/SRMMU pte's
348 */
349 /* MMU TABLE ENTRIES */
350 #define SRMMU_TEINVALID 0x0 /* invalid (serves as !valid bit) */
351 #define SRMMU_TEPTD 0x1 /* Page Table Descriptor */
352 #define SRMMU_TEPTE 0x2 /* Page Table Entry */
353 #define SRMMU_TERES 0x3 /* reserved */
354 #define SRMMU_TETYPE 0x3 /* mask for table entry type */
355 /* PTE FIELDS */
356 #define SRMMU_PPNMASK 0xFFFFFF00
357 #define SRMMU_PPNSHIFT 0x8
358 #define SRMMU_PPNPASHIFT 0x4 /* shift to put ppn into PAddr */
359 #define SRMMU_L1PPNSHFT 0x14
360 #define SRMMU_L1PPNMASK 0xFFF00000
361 #define SRMMU_L2PPNSHFT 0xE
362 #define SRMMU_L2PPNMASK 0xFC000
363 #define SRMMU_L3PPNSHFT 0x8
364 #define SRMMU_L3PPNMASK 0x3F00
365 /* PTE BITS */
366 #define SRMMU_PG_C 0x80 /* cacheable */
367 #define SRMMU_PG_M 0x40 /* modified (dirty) */
368 #define SRMMU_PG_R 0x20 /* referenced */
369 #define SRMMU_PGBITSMSK 0xE0
370 /* PTE PROTECTION */
371 #define SRMMU_PROT_MASK 0x1C /* Mask protection bits out of pte */
372 #define SRMMU_PROT_SHFT 0x2
373 #define PPROT_R_R 0x0 /* These are in the form: */
374 #define PPROT_RW_RW 0x4 /* PPROT_<u>_<s> */
375 #define PPROT_RX_RX 0x8 /* where <u> is the user-mode */
376 #define PPROT_RWX_RWX 0xC /* permission, and <s> is the */
377 #define PPROT_X_X 0x10 /* supervisor mode permission. */
378 #define PPROT_R_RW 0x14 /* R=read, W=write, X=execute */
379 #define PPROT_N_RX 0x18 /* N=none. */
380 #define PPROT_N_RWX 0x1C
381 #define PPROT_WRITE 0x4 /* set iff write priv. allowed */
382 #define PPROT_S 0x18 /* effective S bit */
383 #define PPROT_U2S_OMASK 0x18 /* OR with prot. to revoke user priv */
384 /* TABLE SIZES */
385 #define SRMMU_L1SIZE 0x100
386 #define SRMMU_L2SIZE 0x40
387 #define SRMMU_L3SIZE 0x40
388
389 #define SRMMU_PTE_BITS "\177\020" \
390 "f\0\2TYPE\0=\1PTD\0=\2PTE\0f\2\3PROT\0" \
391 "=\0R_R\0=\4RW_RW\0=\10RX_RX\0=\14RWX_RWX\0=\20X_X\0=\24R_RW\0" \
392 "=\30N_RX\0=\34N_RWX\0" \
393 "b\5R\0b\6M\0b\7C\0f\10\30PFN\0"
394
395 /*
396 * IOMMU PTE bits.
397 */
398 #define IOPTE_PPN_MASK 0x07ffff00
399 #define IOPTE_PPN_SHIFT 8
400 #define IOPTE_RSVD 0x000000f1
401 #define IOPTE_WRITE 0x00000004
402 #define IOPTE_VALID 0x00000002
403
404 #define IOMMU_PTE_BITS "\177\020" \
405 "f\10\23PPN\0b\2W\0b\1V\0"
406
407
408 #if defined(_KERNEL) || defined(_STANDALONE)
409 /*
410 * Macros to get and set the processor context.
411 */
412 #define getcontext4() lduba(AC_CONTEXT, ASI_CONTROL)
413 #define getcontext4m() lda(SRMMU_CXR, ASI_SRMMU)
414 #define getcontext() (CPU_HAS_SRMMU ? getcontext4m() \
415 : getcontext4())
416
417 #define setcontext4(c) stba(AC_CONTEXT, ASI_CONTROL, c)
418 #define setcontext4m(c) sta(SRMMU_CXR, ASI_SRMMU, c)
419 #define setcontext(c) (CPU_HAS_SRMMU ? setcontext4m(c) \
420 : setcontext4(c))
421
422 /* sun4/sun4c access to MMU-resident PTEs */
423 #define getpte4(va) lda(va, ASI_PTE)
424 #define setpte4(va, pte) sta(va, ASI_PTE, pte)
425
426 /* sun4m TLB probe */
427 #define getpte4m(va) lda((va & 0xFFFFF000) | ASI_SRMMUFP_L3, \
428 ASI_SRMMUFP)
429
430 #endif /* _KERNEL || _STANDALONE */
431