Home | History | Annotate | Line # | Download | only in include
pte.h revision 1.26
      1 /*	$NetBSD: pte.h,v 1.26 2002/12/16 16:24:40 pk Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1996
      5  * 	The President and Fellows of Harvard College. All rights reserved.
      6  * Copyright (c) 1992, 1993
      7  *	The Regents of the University of California.  All rights reserved.
      8  *
      9  * This software was developed by the Computer Systems Engineering group
     10  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     11  * contributed to Berkeley.
     12  *
     13  * All advertising materials mentioning features or use of this software
     14  * must display the following acknowledgements:
     15  * 	This product includes software developed by Harvard University.
     16  *	This product includes software developed by the University of
     17  *	California, Lawrence Berkeley Laboratory.
     18  *
     19  * Redistribution and use in source and binary forms, with or without
     20  * modification, are permitted provided that the following conditions
     21  * are met:
     22  * 1. Redistributions of source code must retain the above copyright
     23  *    notice, this list of conditions and the following disclaimer.
     24  * 2. Redistributions in binary form must reproduce the above copyright
     25  *    notice, this list of conditions and the following disclaimer in the
     26  *    documentation and/or other materials provided with the distribution.
     27  * 3. All advertising materials mentioning features or use of this software
     28  *    must display the following acknowledgements:
     29  *	This product includes software developed by Harvard University.
     30  *	This product includes software developed by the University of
     31  *	California, Berkeley and its contributors.
     32  * 4. Neither the name of the University nor the names of its contributors
     33  *    may be used to endorse or promote products derived from this software
     34  *    without specific prior written permission.
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     39  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     46  * SUCH DAMAGE.
     47  *
     48  *	@(#)pte.h	8.1 (Berkeley) 6/11/93
     49  */
     50 
     51 #ifndef	_SPARC_PTE_H_
     52 #define _SPARC_PTE_H_
     53 
     54 #if defined(_KERNEL_OPT)
     55 #include "opt_sparc_arch.h"
     56 #endif
     57 
     58 /*
     59  * Sun-4 (sort of), 4c (SparcStation), and 4m Page Table Entries
     60  * (Sun calls them `Page Map Entries').
     61  */
     62 
     63 #ifndef _LOCORE
     64 /*
     65  * Segment maps contain `pmeg' (Page Map Entry Group) numbers.
     66  * A PMEG is simply an index that names a group of 32 (sun4) or
     67  * 64 (sun4c) PTEs.
     68  * Depending on the CPU model, we need 7 (sun4c) to 10 (sun4/400) bits
     69  * to hold the hardware MMU resource number.
     70  */
     71 typedef u_short pmeg_t;		/* 10 bits needed per Sun-4 segmap entry */
     72 /*
     73  * Region maps contain `smeg' (Segment Entry Group) numbers.
     74  * An SMEG is simply an index that names a group of 64 PMEGs.
     75  */
     76 typedef u_char smeg_t;		/* 8 bits needed per Sun-4 regmap entry */
     77 #endif
     78 
     79 /*
     80  * Address translation works as follows:
     81  *
     82  * (for sun4c and 2-level sun4)
     83  *	1. test va<31:29> -- these must be 000 or 111 (or you get a fault)
     84  *	2. concatenate context_reg<2:0> and va<29:18> to get a 15 bit number;
     85  *	   use this to index the segment maps, yielding a 7 or 9 bit value.
     86  * (for 3-level sun4)
     87  *	1. concatenate context_reg<3:0> and va<31:24> to get a 8 bit number;
     88  *	   use this to index the region maps, yielding a 10 bit value.
     89  *	2. take the value from (1) above and concatenate va<17:12> to
     90  *	   get a `segment map entry' index.  This gives a 9 bit value.
     91  * (for sun4c)
     92  *	3. take the value from (2) above and concatenate va<17:12> to
     93  *	   get a `page map entry' index.  This gives a 32-bit PTE.
     94  * (for sun4)
     95  *	3. take the value from (2 or 3) above and concatenate va<17:13> to
     96  *	   get a `page map entry' index.  This gives a 32-bit PTE.
     97  **
     98  * For sun4m:
     99  *	1. Use context_reg<3:0> to index the context table (located at
    100  *	   (context_reg << 2) | ((ctx_tbl_ptr_reg >> 2) << 6) ). This
    101  *	   gives a 32-bit page-table-descriptor (PTP).
    102  *	2. Use va<31:24> to index the region table located by the PTP from (1):
    103  *	   PTP<31:6> << 10. This gives another PTP for the segment tables
    104  *	3. Use va<23:18> to index the segment table located by the PTP from (2)
    105  *	   as follows: PTP<31:4> << 8. This gives another PTP for the page tbl.
    106  * 	4. Use va<17:12> to index the page table given by (3)'s PTP:
    107  * 	   PTP<31:4> << 8. This gives a 32-bit PTE.
    108  *
    109  * In other words:
    110  *
    111  *	struct sun4_3_levelmmu_virtual_addr {
    112  *		u_int	va_reg:8,	(virtual region)
    113  *			va_seg:6,	(virtual segment)
    114  *			va_pg:5,	(virtual page within segment)
    115  *			va_off:13;	(offset within page)
    116  *	};
    117  *	struct sun4_virtual_addr {
    118  *		u_int	:2,		(required to be the same as bit 29)
    119  *			va_seg:12,	(virtual segment)
    120  *			va_pg:5,	(virtual page within segment)
    121  *			va_off:13;	(offset within page)
    122  *	};
    123  *	struct sun4c_virtual_addr {
    124  *		u_int	:2,		(required to be the same as bit 29)
    125  *			va_seg:12,	(virtual segment)
    126  *			va_pg:6,	(virtual page within segment)
    127  *			va_off:12;	(offset within page)
    128  *	};
    129  *
    130  *	struct sun4m_virtual_addr {
    131  *		u_int	va_reg:8,	(virtual region)
    132  *			va_seg:6,	(virtual segment within region)
    133  *			va_pg:6,	(virtual page within segment)
    134  *			va_off:12;	(offset within page)
    135  *	};
    136  *
    137  * Then, given any `va':
    138  *
    139  *	extern smeg_t regmap[16][1<<8];		(3-level MMU only)
    140  *	extern pmeg_t segmap[8][1<<12];		([16][1<<12] for sun4)
    141  *	extern int ptetable[128][1<<6];		([512][1<<5] for sun4)
    142  *
    143  *	extern u_int  s4m_ctxmap[16];		(sun4m SRMMU only)
    144  *	extern u_int  s4m_regmap[16][1<<8];	(sun4m SRMMU only)
    145  * 	extern u_int  s4m_segmap[1<<8][1<<6];	(sun4m SRMMU only)
    146  * 	extern u_int  s4m_pagmap[1<<14][1<<6];	(sun4m SRMMU only)
    147  *
    148  * (the above being in the hardware, accessed as Alternate Address Spaces on
    149  *  all machines but the Sun4m SRMMU, in which case the tables are in physical
    150  *  kernel memory. In the 4m architecture, the tables are not layed out as
    151  *  2-dim arrays, but are sparsely allocated as needed, and point to each
    152  *  other.)
    153  *
    154  *	if (cputyp==CPU_SUN4M || cputyp==CPU_SUN4D) // SPARC Reference MMU
    155  *		regptp = s4m_ctxmap[curr_ctx];
    156  *		if (!(regptp & SRMMU_TEPTD)) TRAP();
    157  *		segptp = *(u_int *)(((regptp & ~0x3) << 4) | va.va_reg);
    158  *		if (!(segptp & SRMMU_TEPTD)) TRAP();
    159  *		pagptp = *(u_int *)(((segptp & ~0x3) << 4) | va.va_seg);
    160  *		if (!(pagptp & SRMMU_TEPTD)) TRAP();
    161  *		pte = *(u_int *)(((pagptp & ~0x3) << 4) | va.va_pg);
    162  *		if (!(pte & SRMMU_TEPTE)) TRAP();       // like PG_V
    163  * 		if (usermode && PTE_PROT_LEVEL(pte) > 0x5) TRAP();
    164  *		if (writing && !PTE_PROT_LEVEL_ALLOWS_WRITING(pte)) TRAP();
    165  *		if (!(pte & SRMMU_PG_C)) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
    166  *		pte |= SRMMU_PG_U;
    167  * 		if (writing) pte |= PG_M;
    168  * 		physaddr = ((pte & SRMMU_PG_PFNUM) << SRMMU_PGSHIFT)|va.va_off;
    169  *		return;
    170  *	if (mmu_3l)
    171  *		physreg = regmap[curr_ctx][va.va_reg];
    172  *		physseg = segmap[physreg][va.va_seg];
    173  *	else
    174  *		physseg = segmap[curr_ctx][va.va_seg];
    175  *	pte = ptetable[physseg][va.va_pg];
    176  *	if (!(pte & PG_V)) TRAP();
    177  *	if (writing && !pte.pg_w) TRAP();
    178  *	if (usermode && pte.pg_s) TRAP();
    179  *	if (pte & PG_NC) DO_NOT_USE_CACHE_FOR_THIS_ACCESS();
    180  *	pte |= PG_U;					(mark used/accessed)
    181  *	if (writing) pte |= PG_M;			(mark modified)
    182  *	ptetable[physseg][va.va_pg] = pte;
    183  *	physadr = ((pte & PG_PFNUM) << PGSHIFT) | va.va_off;
    184  */
    185 
    186 #if defined(SUN4_MMU3L) && !defined(SUN4)
    187 #error "configuration error"
    188 #endif
    189 
    190 #define	NBPRG	(1 << 24)	/* bytes per region */
    191 #define	RGSHIFT	24		/* log2(NBPRG) */
    192 #define	RGOFSET	(NBPRG - 1)	/* mask for region offset */
    193 #define NSEGRG	(NBPRG / NBPSG)	/* segments per region */
    194 
    195 #define	NBPSG	(1 << 18)	/* bytes per segment */
    196 #define	SGSHIFT	18		/* log2(NBPSG) */
    197 #define	SGOFSET	(NBPSG - 1)	/* mask for segment offset */
    198 
    199 /* number of PTEs that map one segment (not number that fit in one segment!) */
    200 #if defined(SUN4) && (defined(SUN4C) || defined(SUN4M) || defined(SUN4D))
    201 extern int nptesg;
    202 #define	NPTESG	nptesg		/* (which someone will have to initialize) */
    203 #else
    204 #define	NPTESG	(NBPSG / NBPG)
    205 #endif
    206 
    207 /* virtual address to virtual region number */
    208 #define	VA_VREG(va)	(((unsigned int)(va) >> RGSHIFT) & 255)
    209 
    210 /* virtual address to virtual segment number */
    211 #define	VA_VSEG(va)	(((unsigned int)(va) >> SGSHIFT) & 63)
    212 
    213 /* virtual address to virtual page number, for Sun-4 and Sun-4c */
    214 #define	VA_SUN4_VPG(va)		(((int)(va) >> 13) & 31)
    215 #define	VA_SUN4C_VPG(va)	(((int)(va) >> 12) & 63)
    216 #define VA_SUN4M_VPG(va)	(((int)(va) >> 12) & 63)
    217 
    218 /* virtual address to offset within page */
    219 #define VA_SUN4_OFF(va)       	(((int)(va)) & 0x1FFF)
    220 #define VA_SUN4C_OFF(va)     	(((int)(va)) & 0xFFF)
    221 #define VA_SUN4M_OFF(va)	(((int)(va)) & 0xFFF)
    222 
    223 /* truncate virtual address to region base */
    224 #define	VA_ROUNDDOWNTOREG(va)	((int)(va) & ~RGOFSET)
    225 
    226 /* truncate virtual address to segment base */
    227 #define	VA_ROUNDDOWNTOSEG(va)	((int)(va) & ~SGOFSET)
    228 
    229 /* virtual segment to virtual address (must sign extend on holy MMUs!) */
    230 #define	VRTOVA(vr)	((CPU_HAS_SRMMU || HASSUN4_MMU3L)	\
    231 	? ((int)(vr) << RGSHIFT)				\
    232 	: (((int)(vr) << (RGSHIFT+2)) >> 2))
    233 #define	VSTOVA(vr,vs)	((CPU_HAS_SRMMU || HASSUN4_MMU3L)	\
    234 	? (((int)(vr) << RGSHIFT) + ((int)(vs) << SGSHIFT))	\
    235 	: ((((int)(vr) << (RGSHIFT+2)) >> 2) + ((int)(vs) << SGSHIFT)))
    236 
    237 extern int mmu_has_hole;
    238 #define VA_INHOLE(va)	(mmu_has_hole \
    239 	? ( (unsigned int)(((int)(va) >> PG_VSHIFT) + 1) > 1) \
    240 	: 0)
    241 
    242 /* Define the virtual address space hole */
    243 #define MMU_HOLE_START	0x20000000
    244 #define MMU_HOLE_END	0xe0000000
    245 
    246 #if defined(SUN4M) || defined(SUN4D)	/* Optimization: sun4m, sun4d, sun4c
    247 					   have same page size, so they're
    248 					   used interchangeably */
    249 #if defined(SUN4)
    250 #define VA_VPG(va)	(cputyp==CPU_SUN4 ? VA_SUN4_VPG(va) : VA_SUN4C_VPG(va))
    251 #define VA_OFF(va)	(cputyp==CPU_SUN4 ? VA_SUN4_OFF(va) : VA_SUN4C_OFF(va))
    252 #else
    253 #define VA_VPG(va)	VA_SUN4M_VPG(va)
    254 #define VA_OFF(va)	VA_SUN4M_OFF(va)
    255 #endif /* defined SUN4 */
    256 #else /* 4m/4d not defined */
    257 #if defined(SUN4) && defined(SUN4C)
    258 #define VA_VPG(va)	(cputyp==CPU_SUN4C ? VA_SUN4C_VPG(va) : VA_SUN4_VPG(va))
    259 #define VA_OFF(va)	(cputyp==CPU_SUN4C ? VA_SUN4C_OFF(va) : VA_SUN4_OFF(va))
    260 #endif
    261 #if defined(SUN4C) && !defined(SUN4)
    262 #define VA_VPG(va)	VA_SUN4C_VPG(va)
    263 #define VA_OFF(va)	VA_SUN4C_OFF(va)
    264 #endif
    265 #if !defined(SUN4C) && defined(SUN4)
    266 #define	VA_VPG(va)	VA_SUN4_VPG(va)
    267 #define VA_OFF(va)	VA_SUN4_OFF(va)
    268 #endif
    269 #endif /* defined 4m */
    270 
    271 /* there is no `struct pte'; we just use `int'; this is for non-4M only */
    272 #define	PG_V		0x80000000
    273 #define	PG_PROT		0x60000000	/* both protection bits */
    274 #define	PG_W		0x40000000	/* allowed to write */
    275 #define	PG_S		0x20000000	/* supervisor only */
    276 #define	PG_NC		0x10000000	/* non-cacheable */
    277 #define	PG_TYPE		0x0c000000	/* both type bits */
    278 
    279 #define	PG_OBMEM	0x00000000	/* on board memory */
    280 #define	PG_OBIO		0x04000000	/* on board I/O (incl. Sbus on 4c) */
    281 #define	PG_VME16	0x08000000	/* 16-bit-data VME space */
    282 #define	PG_VME32	0x0c000000	/* 32-bit-data VME space */
    283 #if defined(SUN4M) || defined(SUN4D)
    284 #define PG_SUN4M_OBMEM	0x0	       	/* No type bits=>obmem on 4m */
    285 #define PG_SUN4M_OBIO	0xf		/* obio maps to 0xf on 4M */
    286 #define SRMMU_PGTYPE	0xf0000000	/* Top 4 bits of pte PPN give type */
    287 #endif
    288 
    289 #define	PG_U		0x02000000
    290 #define	PG_M		0x01000000
    291 #define PG_IOC		0x00800000
    292 #define	PG_MBZ		0x00780000	/* unused; must be zero (oh really?) */
    293 #define	PG_PFNUM	0x0007ffff	/* n.b.: only 16 bits on sun4c */
    294 
    295 #define	PG_TNC_SHIFT	26		/* shift to get PG_TYPE + PG_NC */
    296 #define	PG_M_SHIFT	24		/* shift to get PG_M, PG_U */
    297 #define PG_M_SHIFT4M	5		/* shift to get SRMMU_PG_M,R on 4m */
    298 /*efine	PG_NOACC	0		** XXX */
    299 #define	PG_KR		0x20000000
    300 #define	PG_KW		0x60000000
    301 #define	PG_URKR		0
    302 #define	PG_UW		0x40000000
    303 
    304 #ifdef KGDB
    305 /* but we will define one for gdb anyway */
    306 struct pte {
    307 	u_int	pg_v:1,
    308 		pg_w:1,
    309 		pg_s:1,
    310 		pg_nc:1;
    311 	enum pgtype { pg_obmem, pg_obio, pg_vme16, pg_vme32 } pg_type:2;
    312 	u_int	pg_u:1,
    313 		pg_m:1,
    314 		pg_mbz:5,
    315 		pg_pfnum:19;
    316 };
    317 #if defined(SUN4M) || defined(SUN4D)
    318 struct srmmu_pte {
    319 	u_int	pg_pfnum:20,
    320 		pg_c:1,
    321 		pg_m:1,
    322 		pg_u:1;
    323 	enum pgprot { pprot_r_r, pprot_rw_rw, pprot_rx_rx, pprot_rwx_rwx,
    324 		      pprot_x_x, pprot_r_rw, pprot_n_rx, pprot_n_rwx }
    325 		pg_prot:3;	/* prot. bits: pprot_<user>_<supervisor> */
    326 	u_int	pg_must_be_2:2;
    327 };
    328 #endif
    329 #endif
    330 
    331 /*
    332  * These are needed in the register window code
    333  * to check the validity of (ostensible) user stack PTEs.
    334  */
    335 #define	PG_VSHIFT	29		/* (va>>vshift)==0 or -1 => valid */
    336 	/* XXX fix this name, it is a va shift not a pte bit shift! */
    337 
    338 #define	PG_PROTSHIFT	29
    339 #define	PG_PROTUWRITE	6		/* PG_V,PG_W,!PG_S */
    340 #define	PG_PROTUREAD	4		/* PG_V,!PG_W,!PG_S */
    341 
    342 /* %%%: Fix above and below for 4m? */
    343 
    344 /* static __inline int PG_VALID(void *va) {
    345 	register int t = va; t >>= PG_VSHIFT; return (t == 0 || t == -1);
    346 } */
    347 
    348 
    349 /*
    350  * Here are the bit definitions for 4M/SRMMU pte's
    351  */
    352 		/* MMU TABLE ENTRIES */
    353 #define SRMMU_TEINVALID	0x0		/* invalid (serves as !valid bit) */
    354 #define	SRMMU_TEPTD	0x1		/* Page Table Descriptor */
    355 #define SRMMU_TEPTE	0x2		/* Page Table Entry */
    356 #define SRMMU_TERES	0x3		/* reserved */
    357 #define SRMMU_TETYPE	0x3		/* mask for table entry type */
    358 		/* PTE FIELDS */
    359 #define SRMMU_PPNMASK	0xFFFFFF00
    360 #define SRMMU_PPNSHIFT	0x8
    361 #define SRMMU_PPNPASHIFT 0x4 		/* shift to put ppn into PAddr */
    362 #define SRMMU_L1PPNSHFT	0x14
    363 #define SRMMU_L1PPNMASK	0xFFF00000
    364 #define SRMMU_L2PPNSHFT 0xE
    365 #define SRMMU_L2PPNMASK	0xFC000
    366 #define SRMMU_L3PPNSHFT	0x8
    367 #define SRMMU_L3PPNMASK 0x3F00
    368 		/* PTE BITS */
    369 #define SRMMU_PG_C	0x80		/* cacheable */
    370 #define SRMMU_PG_M	0x40		/* modified (dirty) */
    371 #define SRMMU_PG_R	0x20		/* referenced */
    372 #define SRMMU_PGBITSMSK	0xE0
    373 		/* PTE PROTECTION */
    374 #define SRMMU_PROT_MASK	0x1C		/* Mask protection bits out of pte */
    375 #define SRMMU_PROT_SHFT	0x2
    376 #define PPROT_R_R	0x0		/* These are in the form:	*/
    377 #define PPROT_RW_RW	0x4		/* 	PPROT_<u>_<s>		*/
    378 #define PPROT_RX_RX	0x8		/* where <u> is the user-mode	*/
    379 #define PPROT_RWX_RWX	0xC		/* permission, and <s> is the 	*/
    380 #define PPROT_X_X	0x10		/* supervisor mode permission.	*/
    381 #define PPROT_R_RW	0x14		/* R=read, W=write, X=execute	*/
    382 #define PPROT_N_RX	0x18		/* N=none.			*/
    383 #define PPROT_N_RWX	0x1C
    384 #define PPROT_WRITE	0x4		/* set iff write priv. allowed  */
    385 #define PPROT_S		0x18		/* effective S bit */
    386 #define PPROT_U2S_OMASK 0x18		/* OR with prot. to revoke user priv */
    387 		/* TABLE SIZES */
    388 #define SRMMU_L1SIZE	0x100
    389 #define SRMMU_L2SIZE 	0x40
    390 #define SRMMU_L3SIZE	0x40
    391 
    392 #define SRMMU_PTE_BITS	"\177\020"					\
    393 	"f\0\2TYPE\0=\1PTD\0=\2PTE\0f\2\3PROT\0"			\
    394 	"=\0R_R\0=\4RW_RW\0=\10RX_RX\0=\14RWX_RWX\0=\20X_X\0=\24R_RW\0"	\
    395 	"=\30N_RX\0=\34N_RWX\0"						\
    396 	"b\5R\0b\6M\0b\7C\0f\10\30PFN\0"
    397 
    398 /*
    399  * IOMMU PTE bits.
    400  */
    401 #define IOPTE_PPN_MASK  0x07ffff00
    402 #define IOPTE_PPN_SHIFT 8
    403 #define IOPTE_RSVD      0x000000f1
    404 #define IOPTE_WRITE     0x00000004
    405 #define IOPTE_VALID     0x00000002
    406 
    407 #define IOMMU_PTE_BITS	"\177\020"					\
    408 	"f\10\23PPN\0b\2W\0b\1V\0"
    409 
    410 
    411 #if defined(_KERNEL) || defined(_STANDALONE)
    412 /*
    413  * Macros to get and set the processor context.
    414  */
    415 #define getcontext4()		lduba(AC_CONTEXT, ASI_CONTROL)
    416 #define getcontext4m()		lda(SRMMU_CXR, ASI_SRMMU)
    417 #define getcontext()		(CPU_HAS_SRMMU ? getcontext4m()		\
    418 					       : getcontext4())
    419 
    420 #define setcontext4(c)		stba(AC_CONTEXT, ASI_CONTROL, c)
    421 #define setcontext4m(c)		sta(SRMMU_CXR, ASI_SRMMU, c)
    422 #define setcontext(c)		(CPU_HAS_SRMMU ? setcontext4m(c)	\
    423 					       : setcontext4(c))
    424 
    425 /* sun4/sun4c access to MMU-resident PTEs */
    426 #define	getpte4(va)		lda(va, ASI_PTE)
    427 #define	setpte4(va, pte)	sta(va, ASI_PTE, pte)
    428 
    429 /* sun4m TLB probe */
    430 #define getpte4m(va)		lda((va & 0xFFFFF000) | ASI_SRMMUFP_L3, \
    431 				    ASI_SRMMUFP)
    432 
    433 #endif /* _KERNEL || _STANDALONE */
    434 #endif /* _SPARC_PTE_H_ */
    435