Home | History | Annotate | Line # | Download | only in ofwboot
loadfile_machdep.c revision 1.3
      1  1.3  martin /*	$NetBSD: loadfile_machdep.c,v 1.3 2007/06/05 08:52:20 martin Exp $	*/
      2  1.1     cdi 
      3  1.1     cdi /*-
      4  1.1     cdi  * Copyright (c) 2005 The NetBSD Foundation, Inc.
      5  1.1     cdi  * All rights reserved.
      6  1.1     cdi  *
      7  1.1     cdi  * This work is based on the code contributed by Robert Drehmel to the
      8  1.1     cdi  * FreeBSD project.
      9  1.1     cdi  *
     10  1.1     cdi  * Redistribution and use in source and binary forms, with or without
     11  1.1     cdi  * modification, are permitted provided that the following conditions
     12  1.1     cdi  * are met:
     13  1.1     cdi  * 1. Redistributions of source code must retain the above copyright
     14  1.1     cdi  *    notice, this list of conditions and the following disclaimer.
     15  1.1     cdi  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1     cdi  *    notice, this list of conditions and the following disclaimer in the
     17  1.1     cdi  *    documentation and/or other materials provided with the distribution.
     18  1.1     cdi  * 3. All advertising materials mentioning features or use of this software
     19  1.1     cdi  *    must display the following acknowledgement:
     20  1.1     cdi  *        This product includes software developed by the NetBSD
     21  1.1     cdi  *        Foundation, Inc. and its contributors.
     22  1.1     cdi  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.1     cdi  *    contributors may be used to endorse or promote products derived
     24  1.1     cdi  *    from this software without specific prior written permission.
     25  1.1     cdi  *
     26  1.1     cdi  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.1     cdi  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.1     cdi  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.1     cdi  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.1     cdi  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.1     cdi  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.1     cdi  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.1     cdi  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.1     cdi  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.1     cdi  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.1     cdi  * POSSIBILITY OF SUCH DAMAGE.
     37  1.1     cdi  */
     38  1.1     cdi 
     39  1.1     cdi #include <lib/libsa/stand.h>
     40  1.1     cdi 
     41  1.1     cdi #include <machine/pte.h>
     42  1.1     cdi #include <machine/cpu.h>
     43  1.1     cdi #include <machine/ctlreg.h>
     44  1.1     cdi #include <machine/vmparam.h>
     45  1.1     cdi #include <machine/promlib.h>
     46  1.1     cdi 
     47  1.1     cdi #include "boot.h"
     48  1.1     cdi #include "openfirm.h"
     49  1.1     cdi 
     50  1.1     cdi 
     51  1.1     cdi #define MAXSEGNUM	50
     52  1.2     uwe #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
     53  1.2     uwe #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
     54  1.1     cdi 
     55  1.1     cdi #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
     56  1.1     cdi 
     57  1.1     cdi 
     58  1.1     cdi typedef int phandle_t;
     59  1.1     cdi 
     60  1.2     uwe extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
     61  1.2     uwe extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
     62  1.3  martin extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
     63  1.1     cdi extern vaddr_t	itlb_va_to_pa(vaddr_t);
     64  1.1     cdi extern vaddr_t	dtlb_va_to_pa(vaddr_t);
     65  1.1     cdi 
     66  1.1     cdi static void	tlb_init(void);
     67  1.1     cdi 
     68  1.1     cdi static int	mmu_mapin(vaddr_t, vsize_t);
     69  1.1     cdi static ssize_t	mmu_read(int, void *, size_t);
     70  1.1     cdi static void*	mmu_memcpy(void *, const void *, size_t);
     71  1.1     cdi static void*	mmu_memset(void *, int, size_t);
     72  1.1     cdi static void	mmu_freeall(void);
     73  1.1     cdi 
     74  1.1     cdi static int	ofw_mapin(vaddr_t, vsize_t);
     75  1.1     cdi static ssize_t	ofw_read(int, void *, size_t);
     76  1.1     cdi static void*	ofw_memcpy(void *, const void *, size_t);
     77  1.1     cdi static void*	ofw_memset(void *, int, size_t);
     78  1.1     cdi static void	ofw_freeall(void);
     79  1.1     cdi 
     80  1.1     cdi static int	nop_mapin(vaddr_t, vsize_t);
     81  1.1     cdi static ssize_t	nop_read(int, void *, size_t);
     82  1.1     cdi static void*	nop_memcpy(void *, const void *, size_t);
     83  1.1     cdi static void*	nop_memset(void *, int, size_t);
     84  1.1     cdi static void	nop_freeall(void);
     85  1.1     cdi 
     86  1.1     cdi 
     87  1.1     cdi struct tlb_entry *dtlb_store = 0;
     88  1.1     cdi struct tlb_entry *itlb_store = 0;
     89  1.1     cdi 
     90  1.1     cdi int dtlb_slot;
     91  1.1     cdi int itlb_slot;
     92  1.1     cdi int dtlb_slot_max;
     93  1.1     cdi int itlb_slot_max;
     94  1.1     cdi 
     95  1.1     cdi static struct kvamap {
     96  1.1     cdi 	uint64_t start;
     97  1.1     cdi 	uint64_t end;
     98  1.1     cdi } kvamap[MAXSEGNUM];
     99  1.1     cdi 
    100  1.1     cdi static struct memsw {
    101  1.1     cdi 	ssize_t	(* read)(int f, void *addr, size_t size);
    102  1.1     cdi 	void*	(* memcpy)(void *dst, const void *src, size_t size);
    103  1.1     cdi 	void*	(* memset)(void *dst, int c, size_t size);
    104  1.1     cdi 	void	(* freeall)(void);
    105  1.1     cdi } memswa[] = {
    106  1.1     cdi 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
    107  1.1     cdi 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
    108  1.1     cdi 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
    109  1.1     cdi };
    110  1.1     cdi 
    111  1.1     cdi static struct memsw *memsw = &memswa[0];
    112  1.1     cdi 
    113  1.1     cdi 
    114  1.1     cdi /*
    115  1.1     cdi  * Check if a memory region is already mapped. Return length and virtual
    116  1.1     cdi  * address of unmapped sub-region, if any.
    117  1.1     cdi  */
    118  1.1     cdi static uint64_t
    119  1.1     cdi kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
    120  1.1     cdi {
    121  1.1     cdi 	int i;
    122  1.1     cdi 
    123  1.1     cdi 	*new_va  = va;
    124  1.1     cdi 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    125  1.1     cdi 		if (kvamap[i].start == NULL)
    126  1.1     cdi 			break;
    127  1.1     cdi 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
    128  1.1     cdi 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
    129  1.1     cdi 			len = (va_len < len) ? len - va_len : 0;
    130  1.1     cdi 			*new_va = kvamap[i].end;
    131  1.1     cdi 		}
    132  1.1     cdi 	}
    133  1.1     cdi 
    134  1.1     cdi 	return (len);
    135  1.1     cdi }
    136  1.1     cdi 
    137  1.1     cdi /*
    138  1.1     cdi  * Record new kernel mapping.
    139  1.1     cdi  */
    140  1.1     cdi static void
    141  1.1     cdi kvamap_enter(uint64_t va, uint64_t len)
    142  1.1     cdi {
    143  1.1     cdi 	int i;
    144  1.1     cdi 
    145  1.1     cdi 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
    146  1.1     cdi 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    147  1.1     cdi 		if (kvamap[i].start == NULL) {
    148  1.1     cdi 			kvamap[i].start = va;
    149  1.1     cdi 			kvamap[i].end = va + len;
    150  1.1     cdi 			break;
    151  1.1     cdi 		}
    152  1.1     cdi 	}
    153  1.1     cdi 
    154  1.1     cdi 	if (i == MAXSEGNUM) {
    155  1.1     cdi 		panic("Too many allocations requested.");
    156  1.1     cdi 	}
    157  1.1     cdi }
    158  1.1     cdi 
    159  1.1     cdi /*
    160  1.1     cdi  * Initialize TLB as required by MMU mapping functions.
    161  1.1     cdi  */
    162  1.1     cdi static void
    163  1.1     cdi tlb_init(void)
    164  1.1     cdi {
    165  1.1     cdi 	phandle_t child;
    166  1.1     cdi 	phandle_t root;
    167  1.1     cdi 	char buf[128];
    168  1.1     cdi 	u_int bootcpu;
    169  1.1     cdi 	u_int cpu;
    170  1.1     cdi 
    171  1.1     cdi 	if (dtlb_store != NULL) {
    172  1.1     cdi 		return;
    173  1.1     cdi 	}
    174  1.1     cdi 
    175  1.1     cdi 	bootcpu = get_cpuid();
    176  1.1     cdi 
    177  1.1     cdi 	if ( (root = prom_findroot()) == -1) {
    178  1.1     cdi 		panic("tlb_init: prom_findroot()");
    179  1.1     cdi 	}
    180  1.1     cdi 
    181  1.1     cdi 	for (child = prom_firstchild(root); child != 0;
    182  1.1     cdi 			child = prom_nextsibling(child)) {
    183  1.1     cdi 		if (child == -1) {
    184  1.1     cdi 			panic("tlb_init: OF_child");
    185  1.1     cdi 		}
    186  1.1     cdi 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
    187  1.1     cdi 		    strcmp(buf, "cpu") == 0) {
    188  1.1     cdi 			if (_prom_getprop(child, "upa-portid", &cpu,
    189  1.1     cdi 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
    190  1.1     cdi 			    &cpu, sizeof(cpu)) == -1)
    191  1.1     cdi 				panic("main: prom_getprop");
    192  1.1     cdi 			if (cpu == bootcpu)
    193  1.1     cdi 				break;
    194  1.1     cdi 		}
    195  1.1     cdi 	}
    196  1.1     cdi 	if (cpu != bootcpu)
    197  1.1     cdi 		panic("init_tlb: no node for bootcpu?!?!");
    198  1.1     cdi 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
    199  1.1     cdi 	    sizeof(dtlb_slot_max)) == -1 ||
    200  1.1     cdi 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
    201  1.1     cdi 	    sizeof(itlb_slot_max)) == -1)
    202  1.1     cdi 		panic("init_tlb: prom_getprop");
    203  1.1     cdi 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
    204  1.1     cdi 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
    205  1.1     cdi 	if (dtlb_store == NULL || itlb_store == NULL) {
    206  1.1     cdi 		panic("init_tlb: malloc");
    207  1.1     cdi 	}
    208  1.1     cdi 
    209  1.1     cdi 	dtlb_slot = itlb_slot = 0;
    210  1.1     cdi }
    211  1.1     cdi 
    212  1.1     cdi /*
    213  1.1     cdi  * Map requested memory region with permanent 4MB pages.
    214  1.1     cdi  */
    215  1.1     cdi static int
    216  1.1     cdi mmu_mapin(vaddr_t rva, vsize_t len)
    217  1.1     cdi {
    218  1.1     cdi 	int64_t data;
    219  1.1     cdi 	vaddr_t va, pa, mva;
    220  1.1     cdi 
    221  1.1     cdi 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    222  1.1     cdi 	rva &= ~PAGE_MASK_4M;
    223  1.1     cdi 
    224  1.1     cdi 	tlb_init();
    225  1.1     cdi 	for (pa = (vaddr_t)-1; len > 0; rva = va) {
    226  1.1     cdi 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
    227  1.1     cdi 			/* The rest is already mapped */
    228  1.1     cdi 			break;
    229  1.1     cdi 		}
    230  1.1     cdi 
    231  1.1     cdi 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
    232  1.1     cdi 		    itlb_va_to_pa(va) == (u_long)-1) {
    233  1.1     cdi 			/* Allocate a physical page, claim the virtual area */
    234  1.1     cdi 			if (pa == (vaddr_t)-1) {
    235  1.1     cdi 				pa = (vaddr_t)OF_alloc_phys(PAGE_SIZE_4M,
    236  1.1     cdi 				    PAGE_SIZE_4M);
    237  1.1     cdi 				if (pa == (vaddr_t)-1)
    238  1.1     cdi 					panic("out of memory");
    239  1.1     cdi 				mva = (vaddr_t)OF_claim_virt(va,
    240  1.1     cdi 				    PAGE_SIZE_4M, 0);
    241  1.1     cdi 				if (mva != va) {
    242  1.1     cdi 					panic("can't claim virtual page "
    243  1.1     cdi 					    "(wanted %#lx, got %#lx)",
    244  1.1     cdi 					    va, mva);
    245  1.1     cdi 				}
    246  1.1     cdi 				/* The mappings may have changed, be paranoid. */
    247  1.1     cdi 				continue;
    248  1.1     cdi 			}
    249  1.1     cdi 
    250  1.1     cdi 			/*
    251  1.1     cdi 			 * Actually, we can only allocate two pages less at
    252  1.1     cdi 			 * most (depending on the kernel TSB size).
    253  1.1     cdi 			 */
    254  1.1     cdi 			if (dtlb_slot >= dtlb_slot_max)
    255  1.1     cdi 				panic("mmu_mapin: out of dtlb_slots");
    256  1.1     cdi 			if (itlb_slot >= itlb_slot_max)
    257  1.1     cdi 				panic("mmu_mapin: out of itlb_slots");
    258  1.1     cdi 
    259  1.1     cdi 			DPRINTF(("mmu_mapin: %p:%p\n", va, pa));
    260  1.1     cdi 
    261  1.1     cdi 			data = TSB_DATA(0,		/* global */
    262  1.1     cdi 					PGSZ_4M,	/* 4mb page */
    263  1.1     cdi 					pa,		/* phys.address */
    264  1.1     cdi 					1,		/* privileged */
    265  1.1     cdi 					1,		/* write */
    266  1.1     cdi 					1,		/* cache */
    267  1.1     cdi 					1,		/* alias */
    268  1.1     cdi 					1,		/* valid */
    269  1.1     cdi 					0		/* endianness */
    270  1.1     cdi 					);
    271  1.1     cdi 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
    272  1.1     cdi 
    273  1.1     cdi 			dtlb_store[dtlb_slot].te_pa = pa;
    274  1.1     cdi 			dtlb_store[dtlb_slot].te_va = va;
    275  1.1     cdi 			dtlb_slot++;
    276  1.1     cdi 			dtlb_enter(va, hi(data), lo(data));
    277  1.1     cdi 			pa = (vaddr_t)-1;
    278  1.1     cdi 		}
    279  1.1     cdi 
    280  1.1     cdi 		kvamap_enter(va, PAGE_SIZE_4M);
    281  1.1     cdi 
    282  1.1     cdi 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
    283  1.1     cdi 		va += PAGE_SIZE_4M;
    284  1.1     cdi 	}
    285  1.1     cdi 
    286  1.1     cdi 	if (pa != (vaddr_t)-1) {
    287  1.1     cdi 		OF_free_phys(pa, PAGE_SIZE_4M);
    288  1.1     cdi 	}
    289  1.1     cdi 
    290  1.1     cdi 	return (0);
    291  1.1     cdi }
    292  1.1     cdi 
    293  1.1     cdi static ssize_t
    294  1.1     cdi mmu_read(int f, void *addr, size_t size)
    295  1.1     cdi {
    296  1.1     cdi 	mmu_mapin((vaddr_t)addr, size);
    297  1.1     cdi 	return read(f, addr, size);
    298  1.1     cdi }
    299  1.1     cdi 
    300  1.1     cdi static void*
    301  1.1     cdi mmu_memcpy(void *dst, const void *src, size_t size)
    302  1.1     cdi {
    303  1.1     cdi 	mmu_mapin((vaddr_t)dst, size);
    304  1.1     cdi 	return memcpy(dst, src, size);
    305  1.1     cdi }
    306  1.1     cdi 
    307  1.1     cdi static void*
    308  1.1     cdi mmu_memset(void *dst, int c, size_t size)
    309  1.1     cdi {
    310  1.1     cdi 	mmu_mapin((vaddr_t)dst, size);
    311  1.1     cdi 	return memset(dst, c, size);
    312  1.1     cdi }
    313  1.1     cdi 
    314  1.1     cdi static void
    315  1.1     cdi mmu_freeall(void)
    316  1.1     cdi {
    317  1.1     cdi 	int i;
    318  1.1     cdi 
    319  1.1     cdi 	dtlb_slot = itlb_slot = 0;
    320  1.1     cdi 	for (i = 0; i < MAXSEGNUM; i++) {
    321  1.1     cdi 		/* XXX return all mappings to PROM and unmap the pages! */
    322  1.1     cdi 		kvamap[i].start = kvamap[i].end = 0;
    323  1.1     cdi 	}
    324  1.1     cdi }
    325  1.1     cdi 
    326  1.1     cdi /*
    327  1.1     cdi  * Claim requested memory region in OpenFirmware allocation pool.
    328  1.1     cdi  */
    329  1.1     cdi static int
    330  1.1     cdi ofw_mapin(vaddr_t rva, vsize_t len)
    331  1.1     cdi {
    332  1.1     cdi 	vaddr_t va;
    333  1.1     cdi 
    334  1.1     cdi 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    335  1.1     cdi 	rva &= ~PAGE_MASK_4M;
    336  1.1     cdi 
    337  1.1     cdi 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
    338  1.1     cdi 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
    339  1.1     cdi 			panic("ofw_mapin: Cannot claim memory.");
    340  1.1     cdi 		}
    341  1.1     cdi 		kvamap_enter(va, len);
    342  1.1     cdi 	}
    343  1.1     cdi 
    344  1.1     cdi 	return (0);
    345  1.1     cdi }
    346  1.1     cdi 
    347  1.1     cdi static ssize_t
    348  1.1     cdi ofw_read(int f, void *addr, size_t size)
    349  1.1     cdi {
    350  1.1     cdi 	ofw_mapin((vaddr_t)addr, size);
    351  1.1     cdi 	return read(f, addr, size);
    352  1.1     cdi }
    353  1.1     cdi 
    354  1.1     cdi static void*
    355  1.1     cdi ofw_memcpy(void *dst, const void *src, size_t size)
    356  1.1     cdi {
    357  1.1     cdi 	ofw_mapin((vaddr_t)dst, size);
    358  1.1     cdi 	return memcpy(dst, src, size);
    359  1.1     cdi }
    360  1.1     cdi 
    361  1.1     cdi static void*
    362  1.1     cdi ofw_memset(void *dst, int c, size_t size)
    363  1.1     cdi {
    364  1.1     cdi 	ofw_mapin((vaddr_t)dst, size);
    365  1.1     cdi 	return memset(dst, c, size);
    366  1.1     cdi }
    367  1.1     cdi 
    368  1.1     cdi static void
    369  1.1     cdi ofw_freeall(void)
    370  1.1     cdi {
    371  1.1     cdi 	int i;
    372  1.1     cdi 
    373  1.1     cdi 	dtlb_slot = itlb_slot = 0;
    374  1.1     cdi 	for (i = 0; i < MAXSEGNUM; i++) {
    375  1.1     cdi 		OF_release((void*)(u_long)kvamap[i].start,
    376  1.1     cdi 				(u_int)(kvamap[i].end - kvamap[i].start));
    377  1.1     cdi 		kvamap[i].start = kvamap[i].end = 0;
    378  1.1     cdi 	}
    379  1.1     cdi }
    380  1.1     cdi 
    381  1.1     cdi /*
    382  1.1     cdi  * NOP implementation exists solely for kernel header loading sake. Here
    383  1.1     cdi  * we use alloc() interface to allocate memory and avoid doing some dangerous
    384  1.1     cdi  * things.
    385  1.1     cdi  */
    386  1.1     cdi static ssize_t
    387  1.1     cdi nop_read(int f, void *addr, size_t size)
    388  1.1     cdi {
    389  1.1     cdi 	return read(f, addr, size);
    390  1.1     cdi }
    391  1.1     cdi 
    392  1.1     cdi static void*
    393  1.1     cdi nop_memcpy(void *dst, const void *src, size_t size)
    394  1.1     cdi {
    395  1.1     cdi 	/*
    396  1.1     cdi 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
    397  1.1     cdi 	 * right after the highest kernel address which will not be mapped with
    398  1.1     cdi 	 * nop_XXX operations.
    399  1.1     cdi 	 */
    400  1.1     cdi 	return (dst);
    401  1.1     cdi }
    402  1.1     cdi 
    403  1.1     cdi static void*
    404  1.1     cdi nop_memset(void *dst, int c, size_t size)
    405  1.1     cdi {
    406  1.1     cdi 	return memset(dst, c, size);
    407  1.1     cdi }
    408  1.1     cdi 
    409  1.1     cdi static void
    410  1.1     cdi nop_freeall(void)
    411  1.1     cdi { }
    412  1.1     cdi 
    413  1.1     cdi /*
    414  1.1     cdi  * loadfile() hooks.
    415  1.1     cdi  */
    416  1.1     cdi ssize_t
    417  1.1     cdi sparc64_read(int f, void *addr, size_t size)
    418  1.1     cdi {
    419  1.1     cdi 	return (*memsw->read)(f, addr, size);
    420  1.1     cdi }
    421  1.1     cdi 
    422  1.1     cdi void*
    423  1.1     cdi sparc64_memcpy(void *dst, const void *src, size_t size)
    424  1.1     cdi {
    425  1.1     cdi 	return (*memsw->memcpy)(dst, src, size);
    426  1.1     cdi }
    427  1.1     cdi 
    428  1.1     cdi void*
    429  1.1     cdi sparc64_memset(void *dst, int c, size_t size)
    430  1.1     cdi {
    431  1.1     cdi 	return (*memsw->memset)(dst, c, size);
    432  1.1     cdi }
    433  1.1     cdi 
    434  1.1     cdi /*
    435  1.3  martin  * Remove write permissions from text mappings in the dTLB.
    436  1.3  martin  * Add entries in the iTLB.
    437  1.3  martin  */
    438  1.3  martin void
    439  1.3  martin sparc64_finalize_tlb(u_long data_va)
    440  1.3  martin {
    441  1.3  martin 	int i;
    442  1.3  martin 	int64_t data;
    443  1.3  martin 
    444  1.3  martin 	for (i = 0; i < dtlb_slot; i++) {
    445  1.3  martin 		if (dtlb_store[i].te_va >= data_va)
    446  1.3  martin 			continue;
    447  1.3  martin 
    448  1.3  martin 		data = TSB_DATA(0,		/* global */
    449  1.3  martin 				PGSZ_4M,	/* 4mb page */
    450  1.3  martin 				dtlb_store[i].te_pa,	/* phys.address */
    451  1.3  martin 				1,		/* privileged */
    452  1.3  martin 				0,		/* write */
    453  1.3  martin 				1,		/* cache */
    454  1.3  martin 				1,		/* alias */
    455  1.3  martin 				1,		/* valid */
    456  1.3  martin 				0		/* endianness */
    457  1.3  martin 				);
    458  1.3  martin 		data |= TLB_L | TLB_CV; /* locked, virt.cache */
    459  1.3  martin 		dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
    460  1.3  martin 		itlb_store[itlb_slot] = dtlb_store[i];
    461  1.3  martin 		itlb_slot++;
    462  1.3  martin 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
    463  1.3  martin 	}
    464  1.3  martin }
    465  1.3  martin 
    466  1.3  martin /*
    467  1.1     cdi  * Record kernel mappings in bootinfo structure.
    468  1.1     cdi  */
    469  1.1     cdi void
    470  1.1     cdi sparc64_bi_add(void)
    471  1.1     cdi {
    472  1.1     cdi 	int i;
    473  1.1     cdi 	int itlb_size, dtlb_size;
    474  1.1     cdi 	struct btinfo_count bi_count;
    475  1.1     cdi 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
    476  1.1     cdi 
    477  1.1     cdi 	bi_count.count = itlb_slot;
    478  1.1     cdi 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
    479  1.1     cdi 	bi_count.count = dtlb_slot;
    480  1.1     cdi 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
    481  1.1     cdi 
    482  1.1     cdi 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
    483  1.1     cdi 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
    484  1.1     cdi 
    485  1.1     cdi 	bi_itlb = alloc(itlb_size);
    486  1.1     cdi 	bi_dtlb = alloc(dtlb_size);
    487  1.1     cdi 
    488  1.1     cdi 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
    489  1.1     cdi 		panic("Out of memory in sparc64_bi_add.\n");
    490  1.1     cdi 	}
    491  1.1     cdi 
    492  1.1     cdi 	for (i = 0; i < itlb_slot; i++) {
    493  1.1     cdi 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
    494  1.1     cdi 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
    495  1.1     cdi 	}
    496  1.1     cdi 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
    497  1.1     cdi 
    498  1.1     cdi 	for (i = 0; i < dtlb_slot; i++) {
    499  1.1     cdi 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
    500  1.1     cdi 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
    501  1.1     cdi 	}
    502  1.1     cdi 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
    503  1.1     cdi }
    504  1.1     cdi 
    505  1.1     cdi /*
    506  1.1     cdi  * Choose kernel image mapping strategy:
    507  1.1     cdi  *
    508  1.1     cdi  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
    509  1.1     cdi  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
    510  1.1     cdi  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
    511  1.1     cdi  */
    512  1.1     cdi void
    513  1.1     cdi loadfile_set_allocator(int type)
    514  1.1     cdi {
    515  1.1     cdi 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
    516  1.1     cdi 		panic("Bad allocator request.\n");
    517  1.1     cdi 	}
    518  1.1     cdi 
    519  1.1     cdi 	/*
    520  1.1     cdi 	 * Release all memory claimed by previous allocator and schedule
    521  1.1     cdi 	 * another allocator for succeeding memory allocation calls.
    522  1.1     cdi 	 */
    523  1.1     cdi 	(*memsw->freeall)();
    524  1.1     cdi 	memsw = &memswa[type];
    525  1.1     cdi }
    526