Home | History | Annotate | Line # | Download | only in ofwboot
loadfile_machdep.c revision 1.10
      1 /*	$NetBSD: loadfile_machdep.c,v 1.10 2011/05/21 16:32:00 nakayama Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This work is based on the code contributed by Robert Drehmel to the
      8  * FreeBSD project.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <lib/libsa/stand.h>
     33 #include <lib/libkern/libkern.h>
     34 
     35 #include <machine/pte.h>
     36 #include <machine/cpu.h>
     37 #include <machine/ctlreg.h>
     38 #include <machine/vmparam.h>
     39 #include <machine/promlib.h>
     40 
     41 #include "boot.h"
     42 #include "openfirm.h"
     43 
     44 
     45 #define MAXSEGNUM	50
     46 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
     47 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
     48 
     49 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
     50 
     51 
     52 typedef int phandle_t;
     53 
     54 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
     55 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
     56 extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
     57 extern vaddr_t	itlb_va_to_pa(vaddr_t);
     58 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
     59 
     60 static void	tlb_init(void);
     61 
     62 static int	mmu_mapin(vaddr_t, vsize_t);
     63 static ssize_t	mmu_read(int, void *, size_t);
     64 static void*	mmu_memcpy(void *, const void *, size_t);
     65 static void*	mmu_memset(void *, int, size_t);
     66 static void	mmu_freeall(void);
     67 
     68 static int	ofw_mapin(vaddr_t, vsize_t);
     69 static ssize_t	ofw_read(int, void *, size_t);
     70 static void*	ofw_memcpy(void *, const void *, size_t);
     71 static void*	ofw_memset(void *, int, size_t);
     72 static void	ofw_freeall(void);
     73 
     74 #if 0
     75 static int	nop_mapin(vaddr_t, vsize_t);
     76 #endif
     77 static ssize_t	nop_read(int, void *, size_t);
     78 static void*	nop_memcpy(void *, const void *, size_t);
     79 static void*	nop_memset(void *, int, size_t);
     80 static void	nop_freeall(void);
     81 
     82 
     83 struct tlb_entry *dtlb_store = 0;
     84 struct tlb_entry *itlb_store = 0;
     85 
     86 int dtlb_slot;
     87 int itlb_slot;
     88 int dtlb_slot_max;
     89 int itlb_slot_max;
     90 
     91 static struct kvamap {
     92 	uint64_t start;
     93 	uint64_t end;
     94 } kvamap[MAXSEGNUM];
     95 
     96 static struct memsw {
     97 	ssize_t	(* read)(int f, void *addr, size_t size);
     98 	void*	(* memcpy)(void *dst, const void *src, size_t size);
     99 	void*	(* memset)(void *dst, int c, size_t size);
    100 	void	(* freeall)(void);
    101 } memswa[] = {
    102 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
    103 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
    104 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
    105 };
    106 
    107 static struct memsw *memsw = &memswa[0];
    108 
    109 
    110 /*
    111  * Check if a memory region is already mapped. Return length and virtual
    112  * address of unmapped sub-region, if any.
    113  */
    114 static uint64_t
    115 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
    116 {
    117 	int i;
    118 
    119 	*new_va  = va;
    120 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    121 		if (kvamap[i].start == NULL)
    122 			break;
    123 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
    124 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
    125 			len = (va_len < len) ? len - va_len : 0;
    126 			*new_va = kvamap[i].end;
    127 		}
    128 	}
    129 
    130 	return (len);
    131 }
    132 
    133 /*
    134  * Record new kernel mapping.
    135  */
    136 static void
    137 kvamap_enter(uint64_t va, uint64_t len)
    138 {
    139 	int i;
    140 
    141 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
    142 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    143 		if (kvamap[i].start == NULL) {
    144 			kvamap[i].start = va;
    145 			kvamap[i].end = va + len;
    146 			break;
    147 		}
    148 	}
    149 
    150 	if (i == MAXSEGNUM) {
    151 		panic("Too many allocations requested.");
    152 	}
    153 }
    154 
    155 /*
    156  * Initialize TLB as required by MMU mapping functions.
    157  */
    158 static void
    159 tlb_init(void)
    160 {
    161 	phandle_t child;
    162 	phandle_t root;
    163 	char buf[128];
    164 	u_int bootcpu;
    165 	u_int cpu;
    166 
    167 	if (dtlb_store != NULL) {
    168 		return;
    169 	}
    170 
    171 	bootcpu = get_cpuid();
    172 
    173 	if ( (root = prom_findroot()) == -1) {
    174 		panic("tlb_init: prom_findroot()");
    175 	}
    176 
    177 	for (child = prom_firstchild(root); child != 0;
    178 			child = prom_nextsibling(child)) {
    179 		if (child == -1) {
    180 			panic("tlb_init: OF_child");
    181 		}
    182 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
    183 		    strcmp(buf, "cpu") == 0) {
    184 			if (_prom_getprop(child, "upa-portid", &cpu,
    185 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
    186 			    &cpu, sizeof(cpu)) == -1)
    187 				panic("tlb_init: prom_getprop");
    188 			if (cpu == bootcpu)
    189 				break;
    190 		}
    191 	}
    192 	if (cpu != bootcpu)
    193 		panic("tlb_init: no node for bootcpu?!?!");
    194 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
    195 	    sizeof(dtlb_slot_max)) == -1 ||
    196 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
    197 	    sizeof(itlb_slot_max)) == -1)
    198 		panic("tlb_init: prom_getprop");
    199 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
    200 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
    201 	if (dtlb_store == NULL || itlb_store == NULL) {
    202 		panic("tlb_init: malloc");
    203 	}
    204 
    205 	dtlb_slot = itlb_slot = 0;
    206 }
    207 
    208 /*
    209  * Map requested memory region with permanent 4MB pages.
    210  */
    211 static int
    212 mmu_mapin(vaddr_t rva, vsize_t len)
    213 {
    214 	uint64_t data;
    215 	paddr_t pa;
    216 	vaddr_t va, mva;
    217 
    218 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    219 	rva &= ~PAGE_MASK_4M;
    220 
    221 	tlb_init();
    222 	for (pa = (paddr_t)-1; len > 0; rva = va) {
    223 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
    224 			/* The rest is already mapped */
    225 			break;
    226 		}
    227 
    228 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
    229 		    itlb_va_to_pa(va) == (u_long)-1) {
    230 			/* Allocate a physical page, claim the virtual area */
    231 			if (pa == (paddr_t)-1) {
    232 				pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
    233 				if (pa == (paddr_t)-1)
    234 					panic("out of memory");
    235 				mva = OF_claim_virt(va, PAGE_SIZE_4M);
    236 				if (mva != va) {
    237 					panic("can't claim virtual page "
    238 					    "(wanted %#lx, got %#lx)",
    239 					    va, mva);
    240 				}
    241 				/* The mappings may have changed, be paranoid. */
    242 				continue;
    243 			}
    244 
    245 			/*
    246 			 * Actually, we can only allocate two pages less at
    247 			 * most (depending on the kernel TSB size).
    248 			 */
    249 			if (dtlb_slot >= dtlb_slot_max)
    250 				panic("mmu_mapin: out of dtlb_slots");
    251 			if (itlb_slot >= itlb_slot_max)
    252 				panic("mmu_mapin: out of itlb_slots");
    253 
    254 			DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
    255 			    hi(pa), lo(pa)));
    256 
    257 			data = TSB_DATA(0,		/* global */
    258 					PGSZ_4M,	/* 4mb page */
    259 					pa,		/* phys.address */
    260 					1,		/* privileged */
    261 					1,		/* write */
    262 					1,		/* cache */
    263 					1,		/* alias */
    264 					1,		/* valid */
    265 					0		/* endianness */
    266 					);
    267 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
    268 
    269 			dtlb_store[dtlb_slot].te_pa = pa;
    270 			dtlb_store[dtlb_slot].te_va = va;
    271 			dtlb_slot++;
    272 			dtlb_enter(va, hi(data), lo(data));
    273 			pa = (paddr_t)-1;
    274 		}
    275 
    276 		kvamap_enter(va, PAGE_SIZE_4M);
    277 
    278 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
    279 		va += PAGE_SIZE_4M;
    280 	}
    281 
    282 	if (pa != (paddr_t)-1) {
    283 		OF_free_phys(pa, PAGE_SIZE_4M);
    284 	}
    285 
    286 	return (0);
    287 }
    288 
    289 static ssize_t
    290 mmu_read(int f, void *addr, size_t size)
    291 {
    292 	mmu_mapin((vaddr_t)addr, size);
    293 	return read(f, addr, size);
    294 }
    295 
    296 static void*
    297 mmu_memcpy(void *dst, const void *src, size_t size)
    298 {
    299 	mmu_mapin((vaddr_t)dst, size);
    300 	return memcpy(dst, src, size);
    301 }
    302 
    303 static void*
    304 mmu_memset(void *dst, int c, size_t size)
    305 {
    306 	mmu_mapin((vaddr_t)dst, size);
    307 	return memset(dst, c, size);
    308 }
    309 
    310 static void
    311 mmu_freeall(void)
    312 {
    313 	int i;
    314 
    315 	dtlb_slot = itlb_slot = 0;
    316 	for (i = 0; i < MAXSEGNUM; i++) {
    317 		/* XXX return all mappings to PROM and unmap the pages! */
    318 		kvamap[i].start = kvamap[i].end = 0;
    319 	}
    320 }
    321 
    322 /*
    323  * Claim requested memory region in OpenFirmware allocation pool.
    324  */
    325 static int
    326 ofw_mapin(vaddr_t rva, vsize_t len)
    327 {
    328 	vaddr_t va;
    329 
    330 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    331 	rva &= ~PAGE_MASK_4M;
    332 
    333 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
    334 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
    335 			panic("ofw_mapin: Cannot claim memory.");
    336 		}
    337 		kvamap_enter(va, len);
    338 	}
    339 
    340 	return (0);
    341 }
    342 
    343 static ssize_t
    344 ofw_read(int f, void *addr, size_t size)
    345 {
    346 	ofw_mapin((vaddr_t)addr, size);
    347 	return read(f, addr, size);
    348 }
    349 
    350 static void*
    351 ofw_memcpy(void *dst, const void *src, size_t size)
    352 {
    353 	ofw_mapin((vaddr_t)dst, size);
    354 	return memcpy(dst, src, size);
    355 }
    356 
    357 static void*
    358 ofw_memset(void *dst, int c, size_t size)
    359 {
    360 	ofw_mapin((vaddr_t)dst, size);
    361 	return memset(dst, c, size);
    362 }
    363 
    364 static void
    365 ofw_freeall(void)
    366 {
    367 	int i;
    368 
    369 	dtlb_slot = itlb_slot = 0;
    370 	for (i = 0; i < MAXSEGNUM; i++) {
    371 		OF_release((void*)(u_long)kvamap[i].start,
    372 				(u_int)(kvamap[i].end - kvamap[i].start));
    373 		kvamap[i].start = kvamap[i].end = 0;
    374 	}
    375 }
    376 
    377 /*
    378  * NOP implementation exists solely for kernel header loading sake. Here
    379  * we use alloc() interface to allocate memory and avoid doing some dangerous
    380  * things.
    381  */
    382 static ssize_t
    383 nop_read(int f, void *addr, size_t size)
    384 {
    385 	return read(f, addr, size);
    386 }
    387 
    388 static void*
    389 nop_memcpy(void *dst, const void *src, size_t size)
    390 {
    391 	/*
    392 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
    393 	 * right after the highest kernel address which will not be mapped with
    394 	 * nop_XXX operations.
    395 	 */
    396 	return (dst);
    397 }
    398 
    399 static void*
    400 nop_memset(void *dst, int c, size_t size)
    401 {
    402 	return memset(dst, c, size);
    403 }
    404 
    405 static void
    406 nop_freeall(void)
    407 { }
    408 
    409 /*
    410  * loadfile() hooks.
    411  */
    412 ssize_t
    413 sparc64_read(int f, void *addr, size_t size)
    414 {
    415 	return (*memsw->read)(f, addr, size);
    416 }
    417 
    418 void*
    419 sparc64_memcpy(void *dst, const void *src, size_t size)
    420 {
    421 	return (*memsw->memcpy)(dst, src, size);
    422 }
    423 
    424 void*
    425 sparc64_memset(void *dst, int c, size_t size)
    426 {
    427 	return (*memsw->memset)(dst, c, size);
    428 }
    429 
    430 /*
    431  * Remove write permissions from text mappings in the dTLB.
    432  * Add entries in the iTLB.
    433  */
    434 void
    435 sparc64_finalize_tlb(u_long data_va)
    436 {
    437 	int i;
    438 	int64_t data;
    439 	bool writable_text = false;
    440 
    441 	for (i = 0; i < dtlb_slot; i++) {
    442 		if (dtlb_store[i].te_va >= data_va) {
    443 			/*
    444 			 * If (for whatever reason) the start of the
    445 			 * writable section is right at the start of
    446 			 * the kernel, we need to map it into the ITLB
    447 			 * nevertheless (and don't make it readonly).
    448 			 */
    449 			if (i == 0 && dtlb_store[i].te_va == data_va)
    450 				writable_text = true;
    451 			else
    452 				continue;
    453 		}
    454 
    455 		data = TSB_DATA(0,		/* global */
    456 				PGSZ_4M,	/* 4mb page */
    457 				dtlb_store[i].te_pa,	/* phys.address */
    458 				1,		/* privileged */
    459 				0,		/* write */
    460 				1,		/* cache */
    461 				1,		/* alias */
    462 				1,		/* valid */
    463 				0		/* endianness */
    464 				);
    465 		data |= TLB_L | TLB_CV; /* locked, virt.cache */
    466 		if (!writable_text)
    467 			dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
    468 		itlb_store[itlb_slot] = dtlb_store[i];
    469 		itlb_slot++;
    470 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
    471 	}
    472 	if (writable_text)
    473 		printf("WARNING: kernel text mapped writable!\n");
    474 }
    475 
    476 /*
    477  * Record kernel mappings in bootinfo structure.
    478  */
    479 void
    480 sparc64_bi_add(void)
    481 {
    482 	int i;
    483 	int itlb_size, dtlb_size;
    484 	struct btinfo_count bi_count;
    485 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
    486 
    487 	bi_count.count = itlb_slot;
    488 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
    489 	bi_count.count = dtlb_slot;
    490 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
    491 
    492 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
    493 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
    494 
    495 	bi_itlb = alloc(itlb_size);
    496 	bi_dtlb = alloc(dtlb_size);
    497 
    498 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
    499 		panic("Out of memory in sparc64_bi_add.\n");
    500 	}
    501 
    502 	for (i = 0; i < itlb_slot; i++) {
    503 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
    504 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
    505 	}
    506 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
    507 
    508 	for (i = 0; i < dtlb_slot; i++) {
    509 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
    510 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
    511 	}
    512 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
    513 }
    514 
    515 /*
    516  * Choose kernel image mapping strategy:
    517  *
    518  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
    519  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
    520  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
    521  */
    522 void
    523 loadfile_set_allocator(int type)
    524 {
    525 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
    526 		panic("Bad allocator request.\n");
    527 	}
    528 
    529 	/*
    530 	 * Release all memory claimed by previous allocator and schedule
    531 	 * another allocator for succeeding memory allocation calls.
    532 	 */
    533 	(*memsw->freeall)();
    534 	memsw = &memswa[type];
    535 }
    536