loadfile_machdep.c revision 1.10 1 /* $NetBSD: loadfile_machdep.c,v 1.10 2011/05/21 16:32:00 nakayama Exp $ */
2
3 /*-
4 * Copyright (c) 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This work is based on the code contributed by Robert Drehmel to the
8 * FreeBSD project.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <lib/libsa/stand.h>
33 #include <lib/libkern/libkern.h>
34
35 #include <machine/pte.h>
36 #include <machine/cpu.h>
37 #include <machine/ctlreg.h>
38 #include <machine/vmparam.h>
39 #include <machine/promlib.h>
40
41 #include "boot.h"
42 #include "openfirm.h"
43
44
45 #define MAXSEGNUM 50
46 #define hi(val) ((uint32_t)(((val) >> 32) & (uint32_t)-1))
47 #define lo(val) ((uint32_t)((val) & (uint32_t)-1))
48
49 #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1)))
50
51
52 typedef int phandle_t;
53
54 extern void itlb_enter(vaddr_t, uint32_t, uint32_t);
55 extern void dtlb_enter(vaddr_t, uint32_t, uint32_t);
56 extern void dtlb_replace(vaddr_t, uint32_t, uint32_t);
57 extern vaddr_t itlb_va_to_pa(vaddr_t);
58 extern vaddr_t dtlb_va_to_pa(vaddr_t);
59
60 static void tlb_init(void);
61
62 static int mmu_mapin(vaddr_t, vsize_t);
63 static ssize_t mmu_read(int, void *, size_t);
64 static void* mmu_memcpy(void *, const void *, size_t);
65 static void* mmu_memset(void *, int, size_t);
66 static void mmu_freeall(void);
67
68 static int ofw_mapin(vaddr_t, vsize_t);
69 static ssize_t ofw_read(int, void *, size_t);
70 static void* ofw_memcpy(void *, const void *, size_t);
71 static void* ofw_memset(void *, int, size_t);
72 static void ofw_freeall(void);
73
74 #if 0
75 static int nop_mapin(vaddr_t, vsize_t);
76 #endif
77 static ssize_t nop_read(int, void *, size_t);
78 static void* nop_memcpy(void *, const void *, size_t);
79 static void* nop_memset(void *, int, size_t);
80 static void nop_freeall(void);
81
82
83 struct tlb_entry *dtlb_store = 0;
84 struct tlb_entry *itlb_store = 0;
85
86 int dtlb_slot;
87 int itlb_slot;
88 int dtlb_slot_max;
89 int itlb_slot_max;
90
91 static struct kvamap {
92 uint64_t start;
93 uint64_t end;
94 } kvamap[MAXSEGNUM];
95
96 static struct memsw {
97 ssize_t (* read)(int f, void *addr, size_t size);
98 void* (* memcpy)(void *dst, const void *src, size_t size);
99 void* (* memset)(void *dst, int c, size_t size);
100 void (* freeall)(void);
101 } memswa[] = {
102 { nop_read, nop_memcpy, nop_memset, nop_freeall },
103 { ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
104 { mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
105 };
106
107 static struct memsw *memsw = &memswa[0];
108
109
110 /*
111 * Check if a memory region is already mapped. Return length and virtual
112 * address of unmapped sub-region, if any.
113 */
114 static uint64_t
115 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
116 {
117 int i;
118
119 *new_va = va;
120 for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
121 if (kvamap[i].start == NULL)
122 break;
123 if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
124 uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
125 len = (va_len < len) ? len - va_len : 0;
126 *new_va = kvamap[i].end;
127 }
128 }
129
130 return (len);
131 }
132
133 /*
134 * Record new kernel mapping.
135 */
136 static void
137 kvamap_enter(uint64_t va, uint64_t len)
138 {
139 int i;
140
141 DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
142 for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
143 if (kvamap[i].start == NULL) {
144 kvamap[i].start = va;
145 kvamap[i].end = va + len;
146 break;
147 }
148 }
149
150 if (i == MAXSEGNUM) {
151 panic("Too many allocations requested.");
152 }
153 }
154
155 /*
156 * Initialize TLB as required by MMU mapping functions.
157 */
158 static void
159 tlb_init(void)
160 {
161 phandle_t child;
162 phandle_t root;
163 char buf[128];
164 u_int bootcpu;
165 u_int cpu;
166
167 if (dtlb_store != NULL) {
168 return;
169 }
170
171 bootcpu = get_cpuid();
172
173 if ( (root = prom_findroot()) == -1) {
174 panic("tlb_init: prom_findroot()");
175 }
176
177 for (child = prom_firstchild(root); child != 0;
178 child = prom_nextsibling(child)) {
179 if (child == -1) {
180 panic("tlb_init: OF_child");
181 }
182 if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
183 strcmp(buf, "cpu") == 0) {
184 if (_prom_getprop(child, "upa-portid", &cpu,
185 sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
186 &cpu, sizeof(cpu)) == -1)
187 panic("tlb_init: prom_getprop");
188 if (cpu == bootcpu)
189 break;
190 }
191 }
192 if (cpu != bootcpu)
193 panic("tlb_init: no node for bootcpu?!?!");
194 if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
195 sizeof(dtlb_slot_max)) == -1 ||
196 _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
197 sizeof(itlb_slot_max)) == -1)
198 panic("tlb_init: prom_getprop");
199 dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
200 itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
201 if (dtlb_store == NULL || itlb_store == NULL) {
202 panic("tlb_init: malloc");
203 }
204
205 dtlb_slot = itlb_slot = 0;
206 }
207
208 /*
209 * Map requested memory region with permanent 4MB pages.
210 */
211 static int
212 mmu_mapin(vaddr_t rva, vsize_t len)
213 {
214 uint64_t data;
215 paddr_t pa;
216 vaddr_t va, mva;
217
218 len = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
219 rva &= ~PAGE_MASK_4M;
220
221 tlb_init();
222 for (pa = (paddr_t)-1; len > 0; rva = va) {
223 if ( (len = kvamap_extract(rva, len, &va)) == 0) {
224 /* The rest is already mapped */
225 break;
226 }
227
228 if (dtlb_va_to_pa(va) == (u_long)-1 ||
229 itlb_va_to_pa(va) == (u_long)-1) {
230 /* Allocate a physical page, claim the virtual area */
231 if (pa == (paddr_t)-1) {
232 pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
233 if (pa == (paddr_t)-1)
234 panic("out of memory");
235 mva = OF_claim_virt(va, PAGE_SIZE_4M);
236 if (mva != va) {
237 panic("can't claim virtual page "
238 "(wanted %#lx, got %#lx)",
239 va, mva);
240 }
241 /* The mappings may have changed, be paranoid. */
242 continue;
243 }
244
245 /*
246 * Actually, we can only allocate two pages less at
247 * most (depending on the kernel TSB size).
248 */
249 if (dtlb_slot >= dtlb_slot_max)
250 panic("mmu_mapin: out of dtlb_slots");
251 if (itlb_slot >= itlb_slot_max)
252 panic("mmu_mapin: out of itlb_slots");
253
254 DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
255 hi(pa), lo(pa)));
256
257 data = TSB_DATA(0, /* global */
258 PGSZ_4M, /* 4mb page */
259 pa, /* phys.address */
260 1, /* privileged */
261 1, /* write */
262 1, /* cache */
263 1, /* alias */
264 1, /* valid */
265 0 /* endianness */
266 );
267 data |= TLB_L | TLB_CV; /* locked, virt.cache */
268
269 dtlb_store[dtlb_slot].te_pa = pa;
270 dtlb_store[dtlb_slot].te_va = va;
271 dtlb_slot++;
272 dtlb_enter(va, hi(data), lo(data));
273 pa = (paddr_t)-1;
274 }
275
276 kvamap_enter(va, PAGE_SIZE_4M);
277
278 len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
279 va += PAGE_SIZE_4M;
280 }
281
282 if (pa != (paddr_t)-1) {
283 OF_free_phys(pa, PAGE_SIZE_4M);
284 }
285
286 return (0);
287 }
288
289 static ssize_t
290 mmu_read(int f, void *addr, size_t size)
291 {
292 mmu_mapin((vaddr_t)addr, size);
293 return read(f, addr, size);
294 }
295
296 static void*
297 mmu_memcpy(void *dst, const void *src, size_t size)
298 {
299 mmu_mapin((vaddr_t)dst, size);
300 return memcpy(dst, src, size);
301 }
302
303 static void*
304 mmu_memset(void *dst, int c, size_t size)
305 {
306 mmu_mapin((vaddr_t)dst, size);
307 return memset(dst, c, size);
308 }
309
310 static void
311 mmu_freeall(void)
312 {
313 int i;
314
315 dtlb_slot = itlb_slot = 0;
316 for (i = 0; i < MAXSEGNUM; i++) {
317 /* XXX return all mappings to PROM and unmap the pages! */
318 kvamap[i].start = kvamap[i].end = 0;
319 }
320 }
321
322 /*
323 * Claim requested memory region in OpenFirmware allocation pool.
324 */
325 static int
326 ofw_mapin(vaddr_t rva, vsize_t len)
327 {
328 vaddr_t va;
329
330 len = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
331 rva &= ~PAGE_MASK_4M;
332
333 if ( (len = kvamap_extract(rva, len, &va)) != 0) {
334 if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
335 panic("ofw_mapin: Cannot claim memory.");
336 }
337 kvamap_enter(va, len);
338 }
339
340 return (0);
341 }
342
343 static ssize_t
344 ofw_read(int f, void *addr, size_t size)
345 {
346 ofw_mapin((vaddr_t)addr, size);
347 return read(f, addr, size);
348 }
349
350 static void*
351 ofw_memcpy(void *dst, const void *src, size_t size)
352 {
353 ofw_mapin((vaddr_t)dst, size);
354 return memcpy(dst, src, size);
355 }
356
357 static void*
358 ofw_memset(void *dst, int c, size_t size)
359 {
360 ofw_mapin((vaddr_t)dst, size);
361 return memset(dst, c, size);
362 }
363
364 static void
365 ofw_freeall(void)
366 {
367 int i;
368
369 dtlb_slot = itlb_slot = 0;
370 for (i = 0; i < MAXSEGNUM; i++) {
371 OF_release((void*)(u_long)kvamap[i].start,
372 (u_int)(kvamap[i].end - kvamap[i].start));
373 kvamap[i].start = kvamap[i].end = 0;
374 }
375 }
376
377 /*
378 * NOP implementation exists solely for kernel header loading sake. Here
379 * we use alloc() interface to allocate memory and avoid doing some dangerous
380 * things.
381 */
382 static ssize_t
383 nop_read(int f, void *addr, size_t size)
384 {
385 return read(f, addr, size);
386 }
387
388 static void*
389 nop_memcpy(void *dst, const void *src, size_t size)
390 {
391 /*
392 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
393 * right after the highest kernel address which will not be mapped with
394 * nop_XXX operations.
395 */
396 return (dst);
397 }
398
399 static void*
400 nop_memset(void *dst, int c, size_t size)
401 {
402 return memset(dst, c, size);
403 }
404
405 static void
406 nop_freeall(void)
407 { }
408
409 /*
410 * loadfile() hooks.
411 */
412 ssize_t
413 sparc64_read(int f, void *addr, size_t size)
414 {
415 return (*memsw->read)(f, addr, size);
416 }
417
418 void*
419 sparc64_memcpy(void *dst, const void *src, size_t size)
420 {
421 return (*memsw->memcpy)(dst, src, size);
422 }
423
424 void*
425 sparc64_memset(void *dst, int c, size_t size)
426 {
427 return (*memsw->memset)(dst, c, size);
428 }
429
430 /*
431 * Remove write permissions from text mappings in the dTLB.
432 * Add entries in the iTLB.
433 */
434 void
435 sparc64_finalize_tlb(u_long data_va)
436 {
437 int i;
438 int64_t data;
439 bool writable_text = false;
440
441 for (i = 0; i < dtlb_slot; i++) {
442 if (dtlb_store[i].te_va >= data_va) {
443 /*
444 * If (for whatever reason) the start of the
445 * writable section is right at the start of
446 * the kernel, we need to map it into the ITLB
447 * nevertheless (and don't make it readonly).
448 */
449 if (i == 0 && dtlb_store[i].te_va == data_va)
450 writable_text = true;
451 else
452 continue;
453 }
454
455 data = TSB_DATA(0, /* global */
456 PGSZ_4M, /* 4mb page */
457 dtlb_store[i].te_pa, /* phys.address */
458 1, /* privileged */
459 0, /* write */
460 1, /* cache */
461 1, /* alias */
462 1, /* valid */
463 0 /* endianness */
464 );
465 data |= TLB_L | TLB_CV; /* locked, virt.cache */
466 if (!writable_text)
467 dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
468 itlb_store[itlb_slot] = dtlb_store[i];
469 itlb_slot++;
470 itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
471 }
472 if (writable_text)
473 printf("WARNING: kernel text mapped writable!\n");
474 }
475
476 /*
477 * Record kernel mappings in bootinfo structure.
478 */
479 void
480 sparc64_bi_add(void)
481 {
482 int i;
483 int itlb_size, dtlb_size;
484 struct btinfo_count bi_count;
485 struct btinfo_tlb *bi_itlb, *bi_dtlb;
486
487 bi_count.count = itlb_slot;
488 bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
489 bi_count.count = dtlb_slot;
490 bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
491
492 itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
493 dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
494
495 bi_itlb = alloc(itlb_size);
496 bi_dtlb = alloc(dtlb_size);
497
498 if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
499 panic("Out of memory in sparc64_bi_add.\n");
500 }
501
502 for (i = 0; i < itlb_slot; i++) {
503 bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
504 bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
505 }
506 bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
507
508 for (i = 0; i < dtlb_slot; i++) {
509 bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
510 bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
511 }
512 bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
513 }
514
515 /*
516 * Choose kernel image mapping strategy:
517 *
518 * LOADFILE_NOP_ALLOCATOR To load kernel image headers
519 * LOADFILE_OFW_ALLOCATOR To map the kernel by OpenFirmware means
520 * LOADFILE_MMU_ALLOCATOR To use permanent 4MB mappings
521 */
522 void
523 loadfile_set_allocator(int type)
524 {
525 if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
526 panic("Bad allocator request.\n");
527 }
528
529 /*
530 * Release all memory claimed by previous allocator and schedule
531 * another allocator for succeeding memory allocation calls.
532 */
533 (*memsw->freeall)();
534 memsw = &memswa[type];
535 }
536