loadfile_machdep.c revision 1.15 1 /* $NetBSD: loadfile_machdep.c,v 1.15 2016/08/15 08:29:34 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2005 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This work is based on the code contributed by Robert Drehmel to the
8 * FreeBSD project.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <lib/libsa/stand.h>
33 #include <lib/libkern/libkern.h>
34
35 #include <machine/pte.h>
36 #include <machine/cpu.h>
37 #include <machine/ctlreg.h>
38 #include <machine/vmparam.h>
39 #include <machine/promlib.h>
40 #include <machine/hypervisor.h>
41
42 #include "boot.h"
43 #include "openfirm.h"
44
45
46 #define MAXSEGNUM 50
47 #define hi(val) ((uint32_t)(((val) >> 32) & (uint32_t)-1))
48 #define lo(val) ((uint32_t)((val) & (uint32_t)-1))
49
50 #define roundup2(x, y) (((x)+((y)-1))&(~((y)-1)))
51
52
53 typedef int phandle_t;
54
55 extern void itlb_enter(vaddr_t, uint32_t, uint32_t);
56 extern void dtlb_enter(vaddr_t, uint32_t, uint32_t);
57 extern void dtlb_replace(vaddr_t, uint32_t, uint32_t);
58 extern vaddr_t itlb_va_to_pa(vaddr_t);
59 extern vaddr_t dtlb_va_to_pa(vaddr_t);
60
61 static void tlb_init(void);
62 static void tlb_init_sun4u(void);
63 #ifdef SUN4V
64 static void tlb_init_sun4v(void);
65 #endif
66 void sparc64_finalize_tlb_sun4u(u_long);
67 #ifdef SUN4V
68 void sparc64_finalize_tlb_sun4v(u_long);
69 #endif
70 static int mmu_mapin(vaddr_t, vsize_t);
71 static int mmu_mapin_sun4u(vaddr_t, vsize_t);
72 #ifdef SUN4V
73 static int mmu_mapin_sun4v(vaddr_t, vsize_t);
74 #endif
75 static ssize_t mmu_read(int, void *, size_t);
76 static void* mmu_memcpy(void *, const void *, size_t);
77 static void* mmu_memset(void *, int, size_t);
78 static void mmu_freeall(void);
79
80 static int ofw_mapin(vaddr_t, vsize_t);
81 static ssize_t ofw_read(int, void *, size_t);
82 static void* ofw_memcpy(void *, const void *, size_t);
83 static void* ofw_memset(void *, int, size_t);
84 static void ofw_freeall(void);
85
86 #if 0
87 static int nop_mapin(vaddr_t, vsize_t);
88 #endif
89 static ssize_t nop_read(int, void *, size_t);
90 static void* nop_memcpy(void *, const void *, size_t);
91 static void* nop_memset(void *, int, size_t);
92 static void nop_freeall(void);
93
94
95 struct tlb_entry *dtlb_store = 0;
96 struct tlb_entry *itlb_store = 0;
97
98 int dtlb_slot;
99 int itlb_slot;
100 int dtlb_slot_max;
101 int itlb_slot_max;
102
103 static struct kvamap {
104 uint64_t start;
105 uint64_t end;
106 } kvamap[MAXSEGNUM];
107
108 static struct memsw {
109 ssize_t (* read)(int f, void *addr, size_t size);
110 void* (* memcpy)(void *dst, const void *src, size_t size);
111 void* (* memset)(void *dst, int c, size_t size);
112 void (* freeall)(void);
113 } memswa[] = {
114 { nop_read, nop_memcpy, nop_memset, nop_freeall },
115 { ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
116 { mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
117 };
118
119 static struct memsw *memsw = &memswa[0];
120
121 #ifdef SUN4V
122 static int sun4v = 0;
123 #endif
124
125 /*
126 * Check if a memory region is already mapped. Return length and virtual
127 * address of unmapped sub-region, if any.
128 */
129 static uint64_t
130 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
131 {
132 int i;
133
134 *new_va = va;
135 for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
136 if (kvamap[i].start == NULL)
137 break;
138 if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
139 uint64_t va_len = kvamap[i].end - va;
140 len = (va_len < len) ? len - va_len : 0;
141 *new_va = kvamap[i].end;
142 }
143 }
144
145 return len;
146 }
147
148 /*
149 * Record new kernel mapping.
150 */
151 static void
152 kvamap_enter(uint64_t va, uint64_t len)
153 {
154 int i;
155
156 DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
157 for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
158 if (kvamap[i].start == NULL) {
159 kvamap[i].start = va;
160 kvamap[i].end = va + len;
161 break;
162 }
163 }
164
165 if (i == MAXSEGNUM) {
166 panic("Too many allocations requested.");
167 }
168 }
169
170 /*
171 * Initialize TLB as required by MMU mapping functions.
172 */
173 static void
174 tlb_init(void)
175 {
176 phandle_t root;
177 #ifdef SUN4V
178 char buf[128];
179 #endif
180
181 if (dtlb_store != NULL) {
182 return;
183 }
184
185 if ( (root = prom_findroot()) == -1) {
186 panic("tlb_init: prom_findroot()");
187 }
188 #ifdef SUN4V
189 if (_prom_getprop(root, "compatible", buf, sizeof(buf)) > 0 &&
190 strcmp(buf, "sun4v") == 0) {
191 tlb_init_sun4v();
192 sun4v = 1;
193 }
194 else {
195 #endif
196 tlb_init_sun4u();
197 #ifdef SUN4V
198 }
199 #endif
200
201 dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
202 itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
203 if (dtlb_store == NULL || itlb_store == NULL) {
204 panic("tlb_init: malloc");
205 }
206
207 dtlb_slot = itlb_slot = 0;
208 }
209
210 /*
211 * Initialize TLB as required by MMU mapping functions - sun4u.
212 */
213 static void
214 tlb_init_sun4u(void)
215 {
216 phandle_t child;
217 phandle_t root;
218 char buf[128];
219 bool foundcpu = false;
220 u_int bootcpu;
221 u_int cpu;
222
223 bootcpu = get_cpuid();
224
225 if ( (root = prom_findroot()) == -1) {
226 panic("tlb_init: prom_findroot()");
227 }
228
229 for (child = prom_firstchild(root); child != 0;
230 child = prom_nextsibling(child)) {
231 if (child == -1) {
232 panic("tlb_init: OF_child");
233 }
234 if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
235 strcmp(buf, "cpu") == 0) {
236 if (_prom_getprop(child, "upa-portid", &cpu,
237 sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
238 &cpu, sizeof(cpu)) == -1)
239 panic("tlb_init: prom_getprop");
240 foundcpu = true;
241 if (cpu == bootcpu)
242 break;
243 }
244 }
245 if (!foundcpu)
246 panic("tlb_init: no cpu found!");
247 if (cpu != bootcpu)
248 panic("tlb_init: no node for bootcpu?!?!");
249 if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
250 sizeof(dtlb_slot_max)) == -1 ||
251 _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
252 sizeof(itlb_slot_max)) == -1)
253 panic("tlb_init: prom_getprop");
254 }
255
256 #ifdef SUN4V
257 /*
258 * Initialize TLB as required by MMU mapping functions - sun4v.
259 */
260 static void
261 tlb_init_sun4v(void)
262 {
263 psize_t len;
264 paddr_t pa;
265 int64_t hv_rc;
266
267 hv_mach_desc((paddr_t)NULL, &len); /* Trick to get actual length */
268 if ( !len ) {
269 panic("init_tlb: hv_mach_desc() failed");
270 }
271 pa = OF_alloc_phys(len, 16);
272 if ( pa == -1 ) {
273 panic("OF_alloc_phys() failed");
274 }
275 hv_rc = hv_mach_desc(pa, &len);
276 if (hv_rc != H_EOK) {
277 panic("hv_mach_desc() failed");
278 }
279 /* XXX dig out TLB node info - 64 is ok for loading the kernel */
280 dtlb_slot_max = itlb_slot_max = 64;
281 }
282 #endif
283
284 /*
285 * Map requested memory region with permanent 4MB pages.
286 */
287 static int
288 mmu_mapin(vaddr_t rva, vsize_t len)
289 {
290 len = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
291 rva &= ~PAGE_MASK_4M;
292
293 tlb_init();
294
295 #if SUN4V
296 if ( sun4v )
297 return mmu_mapin_sun4v(rva, len);
298 else
299 #endif
300 return mmu_mapin_sun4u(rva, len);
301 }
302
303 /*
304 * Map requested memory region with permanent 4MB pages - sun4u.
305 */
306 static int
307 mmu_mapin_sun4u(vaddr_t rva, vsize_t len)
308 {
309 uint64_t data;
310 paddr_t pa;
311 vaddr_t va, mva;
312
313 for (pa = (paddr_t)-1; len > 0; rva = va) {
314 if ( (len = kvamap_extract(rva, len, &va)) == 0) {
315 /* The rest is already mapped */
316 break;
317 }
318
319 if (dtlb_va_to_pa(va) == (u_long)-1 ||
320 itlb_va_to_pa(va) == (u_long)-1) {
321 /* Allocate a physical page, claim the virtual area */
322 if (pa == (paddr_t)-1) {
323 pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
324 if (pa == (paddr_t)-1)
325 panic("out of memory");
326 mva = OF_claim_virt(va, PAGE_SIZE_4M);
327 if (mva != va) {
328 panic("can't claim virtual page "
329 "(wanted %#lx, got %#lx)",
330 va, mva);
331 }
332 /* The mappings may have changed, be paranoid. */
333 continue;
334 }
335
336 /*
337 * Actually, we can only allocate two pages less at
338 * most (depending on the kernel TSB size).
339 */
340 if (dtlb_slot >= dtlb_slot_max)
341 panic("mmu_mapin: out of dtlb_slots");
342 if (itlb_slot >= itlb_slot_max)
343 panic("mmu_mapin: out of itlb_slots");
344
345 DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
346 hi(pa), lo(pa)));
347
348 data = SUN4U_TSB_DATA(0, /* global */
349 PGSZ_4M, /* 4mb page */
350 pa, /* phys.address */
351 1, /* privileged */
352 1, /* write */
353 1, /* cache */
354 1, /* alias */
355 1, /* valid */
356 0 /* endianness */
357 );
358 data |= SUN4U_TLB_L | SUN4U_TLB_CV; /* locked, virt.cache */
359
360 dtlb_store[dtlb_slot].te_pa = pa;
361 dtlb_store[dtlb_slot].te_va = va;
362 dtlb_slot++;
363 dtlb_enter(va, hi(data), lo(data));
364 pa = (paddr_t)-1;
365 }
366
367 kvamap_enter(va, PAGE_SIZE_4M);
368
369 len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
370 va += PAGE_SIZE_4M;
371 }
372
373 if (pa != (paddr_t)-1) {
374 OF_free_phys(pa, PAGE_SIZE_4M);
375 }
376
377 return (0);
378 }
379
380 #ifdef SUN4V
381 /*
382 * Map requested memory region with permanent 4MB pages - sun4v.
383 */
384 static int
385 mmu_mapin_sun4v(vaddr_t rva, vsize_t len)
386 {
387 uint64_t data;
388 paddr_t pa;
389 vaddr_t va, mva;
390 int64_t hv_rc;
391
392 for (pa = (paddr_t)-1; len > 0; rva = va) {
393 if ( (len = kvamap_extract(rva, len, &va)) == 0) {
394 /* The rest is already mapped */
395 break;
396 }
397
398 /* Allocate a physical page, claim the virtual area */
399 if (pa == (paddr_t)-1) {
400 pa = OF_alloc_phys(PAGE_SIZE_4M, PAGE_SIZE_4M);
401 if (pa == (paddr_t)-1)
402 panic("out of memory");
403 mva = OF_claim_virt(va, PAGE_SIZE_4M);
404 if (mva != va) {
405 panic("can't claim virtual page "
406 "(wanted %#lx, got %#lx)",
407 va, mva);
408 }
409 }
410
411 /*
412 * Actually, we can only allocate two pages less at
413 * most (depending on the kernel TSB size).
414 */
415 if (dtlb_slot >= dtlb_slot_max)
416 panic("mmu_mapin: out of dtlb_slots");
417 if (itlb_slot >= itlb_slot_max)
418 panic("mmu_mapin: out of itlb_slots");
419
420 DPRINTF(("mmu_mapin: 0x%lx:0x%x.0x%x\n", va,
421 hi(pa), lo(pa)));
422
423 data = SUN4V_TSB_DATA(
424 0, /* global */
425 PGSZ_4M, /* 4mb page */
426 pa, /* phys.address */
427 1, /* privileged */
428 1, /* write */
429 1, /* cache */
430 1, /* alias */
431 1, /* valid */
432 0 /* endianness */
433 );
434 data |= SUN4V_TLB_CV; /* virt.cache */
435
436 dtlb_store[dtlb_slot].te_pa = pa;
437 dtlb_store[dtlb_slot].te_va = va;
438 dtlb_slot++;
439 hv_rc = hv_mmu_map_perm_addr(va, data, MAP_DTLB);
440 if ( hv_rc != H_EOK ) {
441 panic("hv_mmu_map_perm_addr() failed - rc = %ld", hv_rc);
442 }
443
444 kvamap_enter(va, PAGE_SIZE_4M);
445
446 pa = (paddr_t)-1;
447
448 len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
449 va += PAGE_SIZE_4M;
450 }
451
452 if (pa != (paddr_t)-1) {
453 OF_free_phys(pa, PAGE_SIZE_4M);
454 }
455
456 return (0);
457 }
458 #endif
459
460 static ssize_t
461 mmu_read(int f, void *addr, size_t size)
462 {
463 mmu_mapin((vaddr_t)addr, size);
464 return read(f, addr, size);
465 }
466
467 static void*
468 mmu_memcpy(void *dst, const void *src, size_t size)
469 {
470 mmu_mapin((vaddr_t)dst, size);
471 return memcpy(dst, src, size);
472 }
473
474 static void*
475 mmu_memset(void *dst, int c, size_t size)
476 {
477 mmu_mapin((vaddr_t)dst, size);
478 return memset(dst, c, size);
479 }
480
481 static void
482 mmu_freeall(void)
483 {
484 int i;
485
486 dtlb_slot = itlb_slot = 0;
487 for (i = 0; i < MAXSEGNUM; i++) {
488 /* XXX return all mappings to PROM and unmap the pages! */
489 kvamap[i].start = kvamap[i].end = 0;
490 }
491 }
492
493 /*
494 * Claim requested memory region in OpenFirmware allocation pool.
495 */
496 static int
497 ofw_mapin(vaddr_t rva, vsize_t len)
498 {
499 vaddr_t va;
500
501 len = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
502 rva &= ~PAGE_MASK_4M;
503
504 if ( (len = kvamap_extract(rva, len, &va)) != 0) {
505 if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
506 panic("ofw_mapin: Cannot claim memory.");
507 }
508 kvamap_enter(va, len);
509 }
510
511 return (0);
512 }
513
514 static ssize_t
515 ofw_read(int f, void *addr, size_t size)
516 {
517 ofw_mapin((vaddr_t)addr, size);
518 return read(f, addr, size);
519 }
520
521 static void*
522 ofw_memcpy(void *dst, const void *src, size_t size)
523 {
524 ofw_mapin((vaddr_t)dst, size);
525 return memcpy(dst, src, size);
526 }
527
528 static void*
529 ofw_memset(void *dst, int c, size_t size)
530 {
531 ofw_mapin((vaddr_t)dst, size);
532 return memset(dst, c, size);
533 }
534
535 static void
536 ofw_freeall(void)
537 {
538 int i;
539
540 dtlb_slot = itlb_slot = 0;
541 for (i = 0; i < MAXSEGNUM; i++) {
542 OF_release((void*)(u_long)kvamap[i].start,
543 (u_int)(kvamap[i].end - kvamap[i].start));
544 kvamap[i].start = kvamap[i].end = 0;
545 }
546 }
547
548 /*
549 * NOP implementation exists solely for kernel header loading sake. Here
550 * we use alloc() interface to allocate memory and avoid doing some dangerous
551 * things.
552 */
553 static ssize_t
554 nop_read(int f, void *addr, size_t size)
555 {
556 return read(f, addr, size);
557 }
558
559 static void*
560 nop_memcpy(void *dst, const void *src, size_t size)
561 {
562 /*
563 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
564 * right after the highest kernel address which will not be mapped with
565 * nop_XXX operations.
566 */
567 return (dst);
568 }
569
570 static void*
571 nop_memset(void *dst, int c, size_t size)
572 {
573 return memset(dst, c, size);
574 }
575
576 static void
577 nop_freeall(void)
578 { }
579
580 /*
581 * loadfile() hooks.
582 */
583 ssize_t
584 sparc64_read(int f, void *addr, size_t size)
585 {
586 return (*memsw->read)(f, addr, size);
587 }
588
589 void*
590 sparc64_memcpy(void *dst, const void *src, size_t size)
591 {
592 return (*memsw->memcpy)(dst, src, size);
593 }
594
595 void*
596 sparc64_memset(void *dst, int c, size_t size)
597 {
598 return (*memsw->memset)(dst, c, size);
599 }
600
601 /*
602 * Remove write permissions from text mappings in the dTLB.
603 * Add entries in the iTLB.
604 */
605 void
606 sparc64_finalize_tlb(u_long data_va)
607 {
608 #ifdef SUN4V
609 if ( sun4v )
610 sparc64_finalize_tlb_sun4v(data_va);
611 else
612 #endif
613 sparc64_finalize_tlb_sun4u(data_va);
614 }
615
616 /*
617 * Remove write permissions from text mappings in the dTLB - sun4u.
618 * Add entries in the iTLB.
619 */
620 void
621 sparc64_finalize_tlb_sun4u(u_long data_va)
622 {
623 int i;
624 int64_t data;
625 bool writable_text = false;
626
627 for (i = 0; i < dtlb_slot; i++) {
628 if (dtlb_store[i].te_va >= data_va) {
629 /*
630 * If (for whatever reason) the start of the
631 * writable section is right at the start of
632 * the kernel, we need to map it into the ITLB
633 * nevertheless (and don't make it readonly).
634 */
635 if (i == 0 && dtlb_store[i].te_va == data_va)
636 writable_text = true;
637 else
638 continue;
639 }
640
641 data = SUN4U_TSB_DATA(0, /* global */
642 PGSZ_4M, /* 4mb page */
643 dtlb_store[i].te_pa, /* phys.address */
644 1, /* privileged */
645 0, /* write */
646 1, /* cache */
647 1, /* alias */
648 1, /* valid */
649 0 /* endianness */
650 );
651 data |= SUN4U_TLB_L | SUN4U_TLB_CV; /* locked, virt.cache */
652 if (!writable_text)
653 dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
654 itlb_store[itlb_slot] = dtlb_store[i];
655 itlb_slot++;
656 itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
657 }
658 if (writable_text)
659 printf("WARNING: kernel text mapped writable!\n");
660
661 }
662
663 #ifdef SUN4V
664 /*
665 * Remove write permissions from text mappings in the dTLB - sun4v.
666 * Add entries in the iTLB.
667 */
668 void
669 sparc64_finalize_tlb_sun4v(u_long data_va)
670 {
671 int i;
672 int64_t data;
673 bool writable_text = false;
674 int64_t hv_rc;
675
676 for (i = 0; i < dtlb_slot; i++) {
677 if (dtlb_store[i].te_va >= data_va) {
678 /*
679 * If (for whatever reason) the start of the
680 * writable section is right at the start of
681 * the kernel, we need to map it into the ITLB
682 * nevertheless (and don't make it readonly).
683 */
684 if (i == 0 && dtlb_store[i].te_va == data_va)
685 writable_text = true;
686 else
687 continue;
688 }
689
690 data = SUN4V_TSB_DATA(
691 0, /* global */
692 PGSZ_4M, /* 4mb page */
693 dtlb_store[i].te_pa, /* phys.address */
694 1, /* privileged */
695 0, /* write */
696 1, /* cache */
697 1, /* alias */
698 1, /* valid */
699 0 /* endianness */
700 );
701 data |= SUN4V_TLB_CV|SUN4V_TLB_X; /* virt.cache, executable */
702 if (!writable_text) {
703 hv_rc = hv_mmu_unmap_perm_addr(dtlb_store[i].te_va,
704 MAP_DTLB);
705 if ( hv_rc != H_EOK ) {
706 panic("hv_mmu_unmap_perm_addr() failed - "
707 "rc = %ld", hv_rc);
708 }
709 hv_rc = hv_mmu_map_perm_addr(dtlb_store[i].te_va, data,
710 MAP_DTLB);
711 if ( hv_rc != H_EOK ) {
712 panic("hv_mmu_map_perm_addr() failed - "
713 "rc = %ld", hv_rc);
714 }
715 }
716
717 itlb_store[itlb_slot] = dtlb_store[i];
718 itlb_slot++;
719 hv_rc = hv_mmu_map_perm_addr(dtlb_store[i].te_va, data,
720 MAP_ITLB);
721 if ( hv_rc != H_EOK ) {
722 panic("hv_mmu_map_perm_addr() failed - rc = %ld", hv_rc);
723 }
724 }
725 if (writable_text)
726 printf("WARNING: kernel text mapped writable!\n");
727 }
728 #endif
729
730 /*
731 * Record kernel mappings in bootinfo structure.
732 */
733 void
734 sparc64_bi_add(void)
735 {
736 int i;
737 int itlb_size, dtlb_size;
738 struct btinfo_count bi_count;
739 struct btinfo_tlb *bi_itlb, *bi_dtlb;
740
741 bi_count.count = itlb_slot;
742 bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
743 bi_count.count = dtlb_slot;
744 bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
745
746 itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
747 dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
748
749 bi_itlb = alloc(itlb_size);
750 bi_dtlb = alloc(dtlb_size);
751
752 if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
753 panic("Out of memory in sparc64_bi_add.\n");
754 }
755
756 for (i = 0; i < itlb_slot; i++) {
757 bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
758 bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
759 }
760 bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
761
762 for (i = 0; i < dtlb_slot; i++) {
763 bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
764 bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
765 }
766 bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
767 }
768
769 /*
770 * Choose kernel image mapping strategy:
771 *
772 * LOADFILE_NOP_ALLOCATOR To load kernel image headers
773 * LOADFILE_OFW_ALLOCATOR To map the kernel by OpenFirmware means
774 * LOADFILE_MMU_ALLOCATOR To use permanent 4MB mappings
775 */
776 void
777 loadfile_set_allocator(int type)
778 {
779 if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
780 panic("Bad allocator request.\n");
781 }
782
783 /*
784 * Release all memory claimed by previous allocator and schedule
785 * another allocator for succeeding memory allocation calls.
786 */
787 (*memsw->freeall)();
788 memsw = &memswa[type];
789 }
790