Home | History | Annotate | Line # | Download | only in ofwboot
loadfile_machdep.c revision 1.2
      1 /*	$NetBSD: loadfile_machdep.c,v 1.2 2006/03/04 03:03:31 uwe Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This work is based on the code contributed by Robert Drehmel to the
      8  * FreeBSD project.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <lib/libsa/stand.h>
     40 
     41 #include <machine/pte.h>
     42 #include <machine/cpu.h>
     43 #include <machine/ctlreg.h>
     44 #include <machine/vmparam.h>
     45 #include <machine/promlib.h>
     46 
     47 #include "boot.h"
     48 #include "openfirm.h"
     49 
     50 
     51 #define MAXSEGNUM	50
     52 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
     53 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
     54 
     55 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
     56 
     57 
     58 typedef int phandle_t;
     59 
     60 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
     61 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
     62 extern vaddr_t	itlb_va_to_pa(vaddr_t);
     63 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
     64 
     65 static void	tlb_init(void);
     66 
     67 static int	mmu_mapin(vaddr_t, vsize_t);
     68 static ssize_t	mmu_read(int, void *, size_t);
     69 static void*	mmu_memcpy(void *, const void *, size_t);
     70 static void*	mmu_memset(void *, int, size_t);
     71 static void	mmu_freeall(void);
     72 
     73 static int	ofw_mapin(vaddr_t, vsize_t);
     74 static ssize_t	ofw_read(int, void *, size_t);
     75 static void*	ofw_memcpy(void *, const void *, size_t);
     76 static void*	ofw_memset(void *, int, size_t);
     77 static void	ofw_freeall(void);
     78 
     79 static int	nop_mapin(vaddr_t, vsize_t);
     80 static ssize_t	nop_read(int, void *, size_t);
     81 static void*	nop_memcpy(void *, const void *, size_t);
     82 static void*	nop_memset(void *, int, size_t);
     83 static void	nop_freeall(void);
     84 
     85 
     86 struct tlb_entry *dtlb_store = 0;
     87 struct tlb_entry *itlb_store = 0;
     88 
     89 int dtlb_slot;
     90 int itlb_slot;
     91 int dtlb_slot_max;
     92 int itlb_slot_max;
     93 
     94 static struct kvamap {
     95 	uint64_t start;
     96 	uint64_t end;
     97 } kvamap[MAXSEGNUM];
     98 
     99 static struct memsw {
    100 	ssize_t	(* read)(int f, void *addr, size_t size);
    101 	void*	(* memcpy)(void *dst, const void *src, size_t size);
    102 	void*	(* memset)(void *dst, int c, size_t size);
    103 	void	(* freeall)(void);
    104 } memswa[] = {
    105 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
    106 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
    107 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
    108 };
    109 
    110 static struct memsw *memsw = &memswa[0];
    111 
    112 
    113 /*
    114  * Check if a memory region is already mapped. Return length and virtual
    115  * address of unmapped sub-region, if any.
    116  */
    117 static uint64_t
    118 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
    119 {
    120 	int i;
    121 
    122 	*new_va  = va;
    123 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    124 		if (kvamap[i].start == NULL)
    125 			break;
    126 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
    127 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
    128 			len = (va_len < len) ? len - va_len : 0;
    129 			*new_va = kvamap[i].end;
    130 		}
    131 	}
    132 
    133 	return (len);
    134 }
    135 
    136 /*
    137  * Record new kernel mapping.
    138  */
    139 static void
    140 kvamap_enter(uint64_t va, uint64_t len)
    141 {
    142 	int i;
    143 
    144 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
    145 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    146 		if (kvamap[i].start == NULL) {
    147 			kvamap[i].start = va;
    148 			kvamap[i].end = va + len;
    149 			break;
    150 		}
    151 	}
    152 
    153 	if (i == MAXSEGNUM) {
    154 		panic("Too many allocations requested.");
    155 	}
    156 }
    157 
    158 /*
    159  * Initialize TLB as required by MMU mapping functions.
    160  */
    161 static void
    162 tlb_init(void)
    163 {
    164 	phandle_t child;
    165 	phandle_t root;
    166 	char buf[128];
    167 	u_int bootcpu;
    168 	u_int cpu;
    169 
    170 	if (dtlb_store != NULL) {
    171 		return;
    172 	}
    173 
    174 	bootcpu = get_cpuid();
    175 
    176 	if ( (root = prom_findroot()) == -1) {
    177 		panic("tlb_init: prom_findroot()");
    178 	}
    179 
    180 	for (child = prom_firstchild(root); child != 0;
    181 			child = prom_nextsibling(child)) {
    182 		if (child == -1) {
    183 			panic("tlb_init: OF_child");
    184 		}
    185 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
    186 		    strcmp(buf, "cpu") == 0) {
    187 			if (_prom_getprop(child, "upa-portid", &cpu,
    188 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
    189 			    &cpu, sizeof(cpu)) == -1)
    190 				panic("main: prom_getprop");
    191 			if (cpu == bootcpu)
    192 				break;
    193 		}
    194 	}
    195 	if (cpu != bootcpu)
    196 		panic("init_tlb: no node for bootcpu?!?!");
    197 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
    198 	    sizeof(dtlb_slot_max)) == -1 ||
    199 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
    200 	    sizeof(itlb_slot_max)) == -1)
    201 		panic("init_tlb: prom_getprop");
    202 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
    203 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
    204 	if (dtlb_store == NULL || itlb_store == NULL) {
    205 		panic("init_tlb: malloc");
    206 	}
    207 
    208 	dtlb_slot = itlb_slot = 0;
    209 }
    210 
    211 /*
    212  * Map requested memory region with permanent 4MB pages.
    213  */
    214 static int
    215 mmu_mapin(vaddr_t rva, vsize_t len)
    216 {
    217 	int64_t data;
    218 	vaddr_t va, pa, mva;
    219 
    220 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    221 	rva &= ~PAGE_MASK_4M;
    222 
    223 	tlb_init();
    224 	for (pa = (vaddr_t)-1; len > 0; rva = va) {
    225 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
    226 			/* The rest is already mapped */
    227 			break;
    228 		}
    229 
    230 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
    231 		    itlb_va_to_pa(va) == (u_long)-1) {
    232 			/* Allocate a physical page, claim the virtual area */
    233 			if (pa == (vaddr_t)-1) {
    234 				pa = (vaddr_t)OF_alloc_phys(PAGE_SIZE_4M,
    235 				    PAGE_SIZE_4M);
    236 				if (pa == (vaddr_t)-1)
    237 					panic("out of memory");
    238 				mva = (vaddr_t)OF_claim_virt(va,
    239 				    PAGE_SIZE_4M, 0);
    240 				if (mva != va) {
    241 					panic("can't claim virtual page "
    242 					    "(wanted %#lx, got %#lx)",
    243 					    va, mva);
    244 				}
    245 				/* The mappings may have changed, be paranoid. */
    246 				continue;
    247 			}
    248 
    249 			/*
    250 			 * Actually, we can only allocate two pages less at
    251 			 * most (depending on the kernel TSB size).
    252 			 */
    253 			if (dtlb_slot >= dtlb_slot_max)
    254 				panic("mmu_mapin: out of dtlb_slots");
    255 			if (itlb_slot >= itlb_slot_max)
    256 				panic("mmu_mapin: out of itlb_slots");
    257 
    258 			DPRINTF(("mmu_mapin: %p:%p\n", va, pa));
    259 
    260 			data = TSB_DATA(0,		/* global */
    261 					PGSZ_4M,	/* 4mb page */
    262 					pa,		/* phys.address */
    263 					1,		/* privileged */
    264 					1,		/* write */
    265 					1,		/* cache */
    266 					1,		/* alias */
    267 					1,		/* valid */
    268 					0		/* endianness */
    269 					);
    270 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
    271 
    272 			dtlb_store[dtlb_slot].te_pa = pa;
    273 			dtlb_store[dtlb_slot].te_va = va;
    274 			itlb_store[itlb_slot].te_pa = pa;
    275 			itlb_store[itlb_slot].te_va = va;
    276 			dtlb_slot++;
    277 			itlb_slot++;
    278 			dtlb_enter(va, hi(data), lo(data));
    279 			itlb_enter(va, hi(data), lo(data));
    280 			pa = (vaddr_t)-1;
    281 		}
    282 
    283 		kvamap_enter(va, PAGE_SIZE_4M);
    284 
    285 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
    286 		va += PAGE_SIZE_4M;
    287 	}
    288 
    289 	if (pa != (vaddr_t)-1) {
    290 		OF_free_phys(pa, PAGE_SIZE_4M);
    291 	}
    292 
    293 	return (0);
    294 }
    295 
    296 static ssize_t
    297 mmu_read(int f, void *addr, size_t size)
    298 {
    299 	mmu_mapin((vaddr_t)addr, size);
    300 	return read(f, addr, size);
    301 }
    302 
    303 static void*
    304 mmu_memcpy(void *dst, const void *src, size_t size)
    305 {
    306 	mmu_mapin((vaddr_t)dst, size);
    307 	return memcpy(dst, src, size);
    308 }
    309 
    310 static void*
    311 mmu_memset(void *dst, int c, size_t size)
    312 {
    313 	mmu_mapin((vaddr_t)dst, size);
    314 	return memset(dst, c, size);
    315 }
    316 
    317 static void
    318 mmu_freeall(void)
    319 {
    320 	int i;
    321 
    322 	dtlb_slot = itlb_slot = 0;
    323 	for (i = 0; i < MAXSEGNUM; i++) {
    324 		/* XXX return all mappings to PROM and unmap the pages! */
    325 		kvamap[i].start = kvamap[i].end = 0;
    326 	}
    327 }
    328 
    329 /*
    330  * Claim requested memory region in OpenFirmware allocation pool.
    331  */
    332 static int
    333 ofw_mapin(vaddr_t rva, vsize_t len)
    334 {
    335 	vaddr_t va;
    336 
    337 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    338 	rva &= ~PAGE_MASK_4M;
    339 
    340 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
    341 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
    342 			panic("ofw_mapin: Cannot claim memory.");
    343 		}
    344 		kvamap_enter(va, len);
    345 	}
    346 
    347 	return (0);
    348 }
    349 
    350 static ssize_t
    351 ofw_read(int f, void *addr, size_t size)
    352 {
    353 	ofw_mapin((vaddr_t)addr, size);
    354 	return read(f, addr, size);
    355 }
    356 
    357 static void*
    358 ofw_memcpy(void *dst, const void *src, size_t size)
    359 {
    360 	ofw_mapin((vaddr_t)dst, size);
    361 	return memcpy(dst, src, size);
    362 }
    363 
    364 static void*
    365 ofw_memset(void *dst, int c, size_t size)
    366 {
    367 	ofw_mapin((vaddr_t)dst, size);
    368 	return memset(dst, c, size);
    369 }
    370 
    371 static void
    372 ofw_freeall(void)
    373 {
    374 	int i;
    375 
    376 	dtlb_slot = itlb_slot = 0;
    377 	for (i = 0; i < MAXSEGNUM; i++) {
    378 		OF_release((void*)(u_long)kvamap[i].start,
    379 				(u_int)(kvamap[i].end - kvamap[i].start));
    380 		kvamap[i].start = kvamap[i].end = 0;
    381 	}
    382 }
    383 
    384 /*
    385  * NOP implementation exists solely for kernel header loading sake. Here
    386  * we use alloc() interface to allocate memory and avoid doing some dangerous
    387  * things.
    388  */
    389 static ssize_t
    390 nop_read(int f, void *addr, size_t size)
    391 {
    392 	return read(f, addr, size);
    393 }
    394 
    395 static void*
    396 nop_memcpy(void *dst, const void *src, size_t size)
    397 {
    398 	/*
    399 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
    400 	 * right after the highest kernel address which will not be mapped with
    401 	 * nop_XXX operations.
    402 	 */
    403 	return (dst);
    404 }
    405 
    406 static void*
    407 nop_memset(void *dst, int c, size_t size)
    408 {
    409 	return memset(dst, c, size);
    410 }
    411 
    412 static void
    413 nop_freeall(void)
    414 { }
    415 
    416 /*
    417  * loadfile() hooks.
    418  */
    419 ssize_t
    420 sparc64_read(int f, void *addr, size_t size)
    421 {
    422 	return (*memsw->read)(f, addr, size);
    423 }
    424 
    425 void*
    426 sparc64_memcpy(void *dst, const void *src, size_t size)
    427 {
    428 	return (*memsw->memcpy)(dst, src, size);
    429 }
    430 
    431 void*
    432 sparc64_memset(void *dst, int c, size_t size)
    433 {
    434 	return (*memsw->memset)(dst, c, size);
    435 }
    436 
    437 /*
    438  * Record kernel mappings in bootinfo structure.
    439  */
    440 void
    441 sparc64_bi_add(void)
    442 {
    443 	int i;
    444 	int itlb_size, dtlb_size;
    445 	struct btinfo_count bi_count;
    446 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
    447 
    448 #ifdef LOADER_DEBUG
    449 	pmap_print_tlb('i');
    450 	pmap_print_tlb('d');
    451 #endif
    452 
    453 	bi_count.count = itlb_slot;
    454 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
    455 	bi_count.count = dtlb_slot;
    456 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
    457 
    458 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
    459 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
    460 
    461 	bi_itlb = alloc(itlb_size);
    462 	bi_dtlb = alloc(dtlb_size);
    463 
    464 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
    465 		panic("Out of memory in sparc64_bi_add.\n");
    466 	}
    467 
    468 	for (i = 0; i < itlb_slot; i++) {
    469 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
    470 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
    471 	}
    472 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
    473 
    474 	for (i = 0; i < dtlb_slot; i++) {
    475 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
    476 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
    477 	}
    478 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
    479 }
    480 
    481 /*
    482  * Choose kernel image mapping strategy:
    483  *
    484  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
    485  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
    486  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
    487  */
    488 void
    489 loadfile_set_allocator(int type)
    490 {
    491 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
    492 		panic("Bad allocator request.\n");
    493 	}
    494 
    495 	/*
    496 	 * Release all memory claimed by previous allocator and schedule
    497 	 * another allocator for succeeding memory allocation calls.
    498 	 */
    499 	(*memsw->freeall)();
    500 	memsw = &memswa[type];
    501 }
    502