Home | History | Annotate | Line # | Download | only in ofwboot
loadfile_machdep.c revision 1.3
      1 /*	$NetBSD: loadfile_machdep.c,v 1.3 2007/06/05 08:52:20 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2005 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This work is based on the code contributed by Robert Drehmel to the
      8  * FreeBSD project.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 #include <lib/libsa/stand.h>
     40 
     41 #include <machine/pte.h>
     42 #include <machine/cpu.h>
     43 #include <machine/ctlreg.h>
     44 #include <machine/vmparam.h>
     45 #include <machine/promlib.h>
     46 
     47 #include "boot.h"
     48 #include "openfirm.h"
     49 
     50 
     51 #define MAXSEGNUM	50
     52 #define hi(val)		((uint32_t)(((val) >> 32) & (uint32_t)-1))
     53 #define lo(val)		((uint32_t)((val) & (uint32_t)-1))
     54 
     55 #define roundup2(x, y)	(((x)+((y)-1))&(~((y)-1)))
     56 
     57 
     58 typedef int phandle_t;
     59 
     60 extern void	itlb_enter(vaddr_t, uint32_t, uint32_t);
     61 extern void	dtlb_enter(vaddr_t, uint32_t, uint32_t);
     62 extern void	dtlb_replace(vaddr_t, uint32_t, uint32_t);
     63 extern vaddr_t	itlb_va_to_pa(vaddr_t);
     64 extern vaddr_t	dtlb_va_to_pa(vaddr_t);
     65 
     66 static void	tlb_init(void);
     67 
     68 static int	mmu_mapin(vaddr_t, vsize_t);
     69 static ssize_t	mmu_read(int, void *, size_t);
     70 static void*	mmu_memcpy(void *, const void *, size_t);
     71 static void*	mmu_memset(void *, int, size_t);
     72 static void	mmu_freeall(void);
     73 
     74 static int	ofw_mapin(vaddr_t, vsize_t);
     75 static ssize_t	ofw_read(int, void *, size_t);
     76 static void*	ofw_memcpy(void *, const void *, size_t);
     77 static void*	ofw_memset(void *, int, size_t);
     78 static void	ofw_freeall(void);
     79 
     80 static int	nop_mapin(vaddr_t, vsize_t);
     81 static ssize_t	nop_read(int, void *, size_t);
     82 static void*	nop_memcpy(void *, const void *, size_t);
     83 static void*	nop_memset(void *, int, size_t);
     84 static void	nop_freeall(void);
     85 
     86 
     87 struct tlb_entry *dtlb_store = 0;
     88 struct tlb_entry *itlb_store = 0;
     89 
     90 int dtlb_slot;
     91 int itlb_slot;
     92 int dtlb_slot_max;
     93 int itlb_slot_max;
     94 
     95 static struct kvamap {
     96 	uint64_t start;
     97 	uint64_t end;
     98 } kvamap[MAXSEGNUM];
     99 
    100 static struct memsw {
    101 	ssize_t	(* read)(int f, void *addr, size_t size);
    102 	void*	(* memcpy)(void *dst, const void *src, size_t size);
    103 	void*	(* memset)(void *dst, int c, size_t size);
    104 	void	(* freeall)(void);
    105 } memswa[] = {
    106 	{ nop_read, nop_memcpy, nop_memset, nop_freeall },
    107 	{ ofw_read, ofw_memcpy, ofw_memset, ofw_freeall },
    108 	{ mmu_read, mmu_memcpy, mmu_memset, mmu_freeall }
    109 };
    110 
    111 static struct memsw *memsw = &memswa[0];
    112 
    113 
    114 /*
    115  * Check if a memory region is already mapped. Return length and virtual
    116  * address of unmapped sub-region, if any.
    117  */
    118 static uint64_t
    119 kvamap_extract(vaddr_t va, vsize_t len, vaddr_t *new_va)
    120 {
    121 	int i;
    122 
    123 	*new_va  = va;
    124 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    125 		if (kvamap[i].start == NULL)
    126 			break;
    127 		if ((kvamap[i].start <= va) && (va < kvamap[i].end)) {
    128 			uint64_t va_len = kvamap[i].end - va + kvamap[i].start;
    129 			len = (va_len < len) ? len - va_len : 0;
    130 			*new_va = kvamap[i].end;
    131 		}
    132 	}
    133 
    134 	return (len);
    135 }
    136 
    137 /*
    138  * Record new kernel mapping.
    139  */
    140 static void
    141 kvamap_enter(uint64_t va, uint64_t len)
    142 {
    143 	int i;
    144 
    145 	DPRINTF(("kvamap_enter: %d@%p\n", (int)len, (void*)(u_long)va));
    146 	for (i = 0; (len > 0) && (i < MAXSEGNUM); i++) {
    147 		if (kvamap[i].start == NULL) {
    148 			kvamap[i].start = va;
    149 			kvamap[i].end = va + len;
    150 			break;
    151 		}
    152 	}
    153 
    154 	if (i == MAXSEGNUM) {
    155 		panic("Too many allocations requested.");
    156 	}
    157 }
    158 
    159 /*
    160  * Initialize TLB as required by MMU mapping functions.
    161  */
    162 static void
    163 tlb_init(void)
    164 {
    165 	phandle_t child;
    166 	phandle_t root;
    167 	char buf[128];
    168 	u_int bootcpu;
    169 	u_int cpu;
    170 
    171 	if (dtlb_store != NULL) {
    172 		return;
    173 	}
    174 
    175 	bootcpu = get_cpuid();
    176 
    177 	if ( (root = prom_findroot()) == -1) {
    178 		panic("tlb_init: prom_findroot()");
    179 	}
    180 
    181 	for (child = prom_firstchild(root); child != 0;
    182 			child = prom_nextsibling(child)) {
    183 		if (child == -1) {
    184 			panic("tlb_init: OF_child");
    185 		}
    186 		if (_prom_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
    187 		    strcmp(buf, "cpu") == 0) {
    188 			if (_prom_getprop(child, "upa-portid", &cpu,
    189 			    sizeof(cpu)) == -1 && _prom_getprop(child, "portid",
    190 			    &cpu, sizeof(cpu)) == -1)
    191 				panic("main: prom_getprop");
    192 			if (cpu == bootcpu)
    193 				break;
    194 		}
    195 	}
    196 	if (cpu != bootcpu)
    197 		panic("init_tlb: no node for bootcpu?!?!");
    198 	if (_prom_getprop(child, "#dtlb-entries", &dtlb_slot_max,
    199 	    sizeof(dtlb_slot_max)) == -1 ||
    200 	    _prom_getprop(child, "#itlb-entries", &itlb_slot_max,
    201 	    sizeof(itlb_slot_max)) == -1)
    202 		panic("init_tlb: prom_getprop");
    203 	dtlb_store = alloc(dtlb_slot_max * sizeof(*dtlb_store));
    204 	itlb_store = alloc(itlb_slot_max * sizeof(*itlb_store));
    205 	if (dtlb_store == NULL || itlb_store == NULL) {
    206 		panic("init_tlb: malloc");
    207 	}
    208 
    209 	dtlb_slot = itlb_slot = 0;
    210 }
    211 
    212 /*
    213  * Map requested memory region with permanent 4MB pages.
    214  */
    215 static int
    216 mmu_mapin(vaddr_t rva, vsize_t len)
    217 {
    218 	int64_t data;
    219 	vaddr_t va, pa, mva;
    220 
    221 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    222 	rva &= ~PAGE_MASK_4M;
    223 
    224 	tlb_init();
    225 	for (pa = (vaddr_t)-1; len > 0; rva = va) {
    226 		if ( (len = kvamap_extract(rva, len, &va)) == 0) {
    227 			/* The rest is already mapped */
    228 			break;
    229 		}
    230 
    231 		if (dtlb_va_to_pa(va) == (u_long)-1 ||
    232 		    itlb_va_to_pa(va) == (u_long)-1) {
    233 			/* Allocate a physical page, claim the virtual area */
    234 			if (pa == (vaddr_t)-1) {
    235 				pa = (vaddr_t)OF_alloc_phys(PAGE_SIZE_4M,
    236 				    PAGE_SIZE_4M);
    237 				if (pa == (vaddr_t)-1)
    238 					panic("out of memory");
    239 				mva = (vaddr_t)OF_claim_virt(va,
    240 				    PAGE_SIZE_4M, 0);
    241 				if (mva != va) {
    242 					panic("can't claim virtual page "
    243 					    "(wanted %#lx, got %#lx)",
    244 					    va, mva);
    245 				}
    246 				/* The mappings may have changed, be paranoid. */
    247 				continue;
    248 			}
    249 
    250 			/*
    251 			 * Actually, we can only allocate two pages less at
    252 			 * most (depending on the kernel TSB size).
    253 			 */
    254 			if (dtlb_slot >= dtlb_slot_max)
    255 				panic("mmu_mapin: out of dtlb_slots");
    256 			if (itlb_slot >= itlb_slot_max)
    257 				panic("mmu_mapin: out of itlb_slots");
    258 
    259 			DPRINTF(("mmu_mapin: %p:%p\n", va, pa));
    260 
    261 			data = TSB_DATA(0,		/* global */
    262 					PGSZ_4M,	/* 4mb page */
    263 					pa,		/* phys.address */
    264 					1,		/* privileged */
    265 					1,		/* write */
    266 					1,		/* cache */
    267 					1,		/* alias */
    268 					1,		/* valid */
    269 					0		/* endianness */
    270 					);
    271 			data |= TLB_L | TLB_CV; /* locked, virt.cache */
    272 
    273 			dtlb_store[dtlb_slot].te_pa = pa;
    274 			dtlb_store[dtlb_slot].te_va = va;
    275 			dtlb_slot++;
    276 			dtlb_enter(va, hi(data), lo(data));
    277 			pa = (vaddr_t)-1;
    278 		}
    279 
    280 		kvamap_enter(va, PAGE_SIZE_4M);
    281 
    282 		len -= len > PAGE_SIZE_4M ? PAGE_SIZE_4M : len;
    283 		va += PAGE_SIZE_4M;
    284 	}
    285 
    286 	if (pa != (vaddr_t)-1) {
    287 		OF_free_phys(pa, PAGE_SIZE_4M);
    288 	}
    289 
    290 	return (0);
    291 }
    292 
    293 static ssize_t
    294 mmu_read(int f, void *addr, size_t size)
    295 {
    296 	mmu_mapin((vaddr_t)addr, size);
    297 	return read(f, addr, size);
    298 }
    299 
    300 static void*
    301 mmu_memcpy(void *dst, const void *src, size_t size)
    302 {
    303 	mmu_mapin((vaddr_t)dst, size);
    304 	return memcpy(dst, src, size);
    305 }
    306 
    307 static void*
    308 mmu_memset(void *dst, int c, size_t size)
    309 {
    310 	mmu_mapin((vaddr_t)dst, size);
    311 	return memset(dst, c, size);
    312 }
    313 
    314 static void
    315 mmu_freeall(void)
    316 {
    317 	int i;
    318 
    319 	dtlb_slot = itlb_slot = 0;
    320 	for (i = 0; i < MAXSEGNUM; i++) {
    321 		/* XXX return all mappings to PROM and unmap the pages! */
    322 		kvamap[i].start = kvamap[i].end = 0;
    323 	}
    324 }
    325 
    326 /*
    327  * Claim requested memory region in OpenFirmware allocation pool.
    328  */
    329 static int
    330 ofw_mapin(vaddr_t rva, vsize_t len)
    331 {
    332 	vaddr_t va;
    333 
    334 	len  = roundup2(len + (rva & PAGE_MASK_4M), PAGE_SIZE_4M);
    335 	rva &= ~PAGE_MASK_4M;
    336 
    337 	if ( (len = kvamap_extract(rva, len, &va)) != 0) {
    338 		if (OF_claim((void *)(long)va, len, PAGE_SIZE_4M) == (void*)-1){
    339 			panic("ofw_mapin: Cannot claim memory.");
    340 		}
    341 		kvamap_enter(va, len);
    342 	}
    343 
    344 	return (0);
    345 }
    346 
    347 static ssize_t
    348 ofw_read(int f, void *addr, size_t size)
    349 {
    350 	ofw_mapin((vaddr_t)addr, size);
    351 	return read(f, addr, size);
    352 }
    353 
    354 static void*
    355 ofw_memcpy(void *dst, const void *src, size_t size)
    356 {
    357 	ofw_mapin((vaddr_t)dst, size);
    358 	return memcpy(dst, src, size);
    359 }
    360 
    361 static void*
    362 ofw_memset(void *dst, int c, size_t size)
    363 {
    364 	ofw_mapin((vaddr_t)dst, size);
    365 	return memset(dst, c, size);
    366 }
    367 
    368 static void
    369 ofw_freeall(void)
    370 {
    371 	int i;
    372 
    373 	dtlb_slot = itlb_slot = 0;
    374 	for (i = 0; i < MAXSEGNUM; i++) {
    375 		OF_release((void*)(u_long)kvamap[i].start,
    376 				(u_int)(kvamap[i].end - kvamap[i].start));
    377 		kvamap[i].start = kvamap[i].end = 0;
    378 	}
    379 }
    380 
    381 /*
    382  * NOP implementation exists solely for kernel header loading sake. Here
    383  * we use alloc() interface to allocate memory and avoid doing some dangerous
    384  * things.
    385  */
    386 static ssize_t
    387 nop_read(int f, void *addr, size_t size)
    388 {
    389 	return read(f, addr, size);
    390 }
    391 
    392 static void*
    393 nop_memcpy(void *dst, const void *src, size_t size)
    394 {
    395 	/*
    396 	 * Real NOP to make LOAD_HDR work: loadfile_elfXX copies ELF headers
    397 	 * right after the highest kernel address which will not be mapped with
    398 	 * nop_XXX operations.
    399 	 */
    400 	return (dst);
    401 }
    402 
    403 static void*
    404 nop_memset(void *dst, int c, size_t size)
    405 {
    406 	return memset(dst, c, size);
    407 }
    408 
    409 static void
    410 nop_freeall(void)
    411 { }
    412 
    413 /*
    414  * loadfile() hooks.
    415  */
    416 ssize_t
    417 sparc64_read(int f, void *addr, size_t size)
    418 {
    419 	return (*memsw->read)(f, addr, size);
    420 }
    421 
    422 void*
    423 sparc64_memcpy(void *dst, const void *src, size_t size)
    424 {
    425 	return (*memsw->memcpy)(dst, src, size);
    426 }
    427 
    428 void*
    429 sparc64_memset(void *dst, int c, size_t size)
    430 {
    431 	return (*memsw->memset)(dst, c, size);
    432 }
    433 
    434 /*
    435  * Remove write permissions from text mappings in the dTLB.
    436  * Add entries in the iTLB.
    437  */
    438 void
    439 sparc64_finalize_tlb(u_long data_va)
    440 {
    441 	int i;
    442 	int64_t data;
    443 
    444 	for (i = 0; i < dtlb_slot; i++) {
    445 		if (dtlb_store[i].te_va >= data_va)
    446 			continue;
    447 
    448 		data = TSB_DATA(0,		/* global */
    449 				PGSZ_4M,	/* 4mb page */
    450 				dtlb_store[i].te_pa,	/* phys.address */
    451 				1,		/* privileged */
    452 				0,		/* write */
    453 				1,		/* cache */
    454 				1,		/* alias */
    455 				1,		/* valid */
    456 				0		/* endianness */
    457 				);
    458 		data |= TLB_L | TLB_CV; /* locked, virt.cache */
    459 		dtlb_replace(dtlb_store[i].te_va, hi(data), lo(data));
    460 		itlb_store[itlb_slot] = dtlb_store[i];
    461 		itlb_slot++;
    462 		itlb_enter(dtlb_store[i].te_va, hi(data), lo(data));
    463 	}
    464 }
    465 
    466 /*
    467  * Record kernel mappings in bootinfo structure.
    468  */
    469 void
    470 sparc64_bi_add(void)
    471 {
    472 	int i;
    473 	int itlb_size, dtlb_size;
    474 	struct btinfo_count bi_count;
    475 	struct btinfo_tlb *bi_itlb, *bi_dtlb;
    476 
    477 	bi_count.count = itlb_slot;
    478 	bi_add(&bi_count, BTINFO_ITLB_SLOTS, sizeof(bi_count));
    479 	bi_count.count = dtlb_slot;
    480 	bi_add(&bi_count, BTINFO_DTLB_SLOTS, sizeof(bi_count));
    481 
    482 	itlb_size = sizeof(*bi_itlb) + sizeof(struct tlb_entry) * itlb_slot;
    483 	dtlb_size = sizeof(*bi_dtlb) + sizeof(struct tlb_entry) * dtlb_slot;
    484 
    485 	bi_itlb = alloc(itlb_size);
    486 	bi_dtlb = alloc(dtlb_size);
    487 
    488 	if ((bi_itlb == NULL) || (bi_dtlb == NULL)) {
    489 		panic("Out of memory in sparc64_bi_add.\n");
    490 	}
    491 
    492 	for (i = 0; i < itlb_slot; i++) {
    493 		bi_itlb->tlb[i].te_va = itlb_store[i].te_va;
    494 		bi_itlb->tlb[i].te_pa = itlb_store[i].te_pa;
    495 	}
    496 	bi_add(bi_itlb, BTINFO_ITLB, itlb_size);
    497 
    498 	for (i = 0; i < dtlb_slot; i++) {
    499 		bi_dtlb->tlb[i].te_va = dtlb_store[i].te_va;
    500 		bi_dtlb->tlb[i].te_pa = dtlb_store[i].te_pa;
    501 	}
    502 	bi_add(bi_dtlb, BTINFO_DTLB, dtlb_size);
    503 }
    504 
    505 /*
    506  * Choose kernel image mapping strategy:
    507  *
    508  * LOADFILE_NOP_ALLOCATOR	To load kernel image headers
    509  * LOADFILE_OFW_ALLOCATOR	To map the kernel by OpenFirmware means
    510  * LOADFILE_MMU_ALLOCATOR	To use permanent 4MB mappings
    511  */
    512 void
    513 loadfile_set_allocator(int type)
    514 {
    515 	if (type >= (sizeof(memswa) / sizeof(struct memsw))) {
    516 		panic("Bad allocator request.\n");
    517 	}
    518 
    519 	/*
    520 	 * Release all memory claimed by previous allocator and schedule
    521 	 * another allocator for succeeding memory allocation calls.
    522 	 */
    523 	(*memsw->freeall)();
    524 	memsw = &memswa[type];
    525 }
    526