sbus.c revision 1.59 1 /* $NetBSD: sbus.c,v 1.59 2003/04/01 16:34:58 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1999-2002 Eduardo Horvath
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31
32 /*
33 * Sbus stuff.
34 */
35 #include "opt_ddb.h"
36
37 #include <sys/param.h>
38 #include <sys/extent.h>
39 #include <sys/malloc.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/reboot.h>
43
44 #include <machine/bus.h>
45 #include <machine/openfirm.h>
46
47 #include <sparc64/sparc64/cache.h>
48 #include <sparc64/dev/iommureg.h>
49 #include <sparc64/dev/iommuvar.h>
50 #include <sparc64/dev/sbusreg.h>
51 #include <dev/sbus/sbusvar.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #include <machine/autoconf.h>
56 #include <machine/cpu.h>
57 #include <machine/sparc64.h>
58
59 #ifdef DEBUG
60 #define SDB_DVMA 0x1
61 #define SDB_INTR 0x2
62 int sbus_debug = 0;
63 #define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0)
64 #else
65 #define DPRINTF(l, s)
66 #endif
67
68 void sbusreset __P((int));
69
70 static bus_space_tag_t sbus_alloc_bustag __P((struct sbus_softc *));
71 static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *));
72 static int sbus_get_intr __P((struct sbus_softc *, int,
73 struct openprom_intr **, int *, int));
74 static int sbus_overtemp __P((void *));
75 static int _sbus_bus_map __P((
76 bus_space_tag_t,
77 bus_addr_t, /*offset*/
78 bus_size_t, /*size*/
79 int, /*flags*/
80 vaddr_t, /* XXX unused -- compat w/sparc */
81 bus_space_handle_t *));
82 static void *sbus_intr_establish __P((
83 bus_space_tag_t,
84 int, /*Sbus interrupt level*/
85 int, /*`device class' priority*/
86 int (*) __P((void *)), /*handler*/
87 void *, /*handler arg*/
88 void (*) __P((void)))); /*optional fast trap*/
89
90
91 /* autoconfiguration driver */
92 int sbus_match __P((struct device *, struct cfdata *, void *));
93 void sbus_attach __P((struct device *, struct device *, void *));
94
95
96 CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
97 sbus_match, sbus_attach, NULL, NULL);
98
99 extern struct cfdriver sbus_cd;
100
101 /*
102 * DVMA routines
103 */
104 int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
105 bus_size_t, struct proc *, int));
106 void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
107 int sbus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
108 bus_dma_segment_t *, int, bus_size_t, int));
109 void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
110 bus_size_t, int));
111 int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
112 bus_size_t alignment, bus_size_t boundary,
113 bus_dma_segment_t *segs, int nsegs, int *rsegs,
114 int flags));
115 void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
116 int nsegs));
117 int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
118 int nsegs, size_t size, caddr_t *kvap, int flags));
119 void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
120 size_t size));
121
122 /*
123 * Child devices receive the Sbus interrupt level in their attach
124 * arguments. We translate these to CPU IPLs using the following
125 * tables. Note: obio bus interrupt levels are identical to the
126 * processor IPL.
127 *
128 * The second set of tables is used when the Sbus interrupt level
129 * cannot be had from the PROM as an `interrupt' property. We then
130 * fall back on the `intr' property which contains the CPU IPL.
131 */
132
133 /*
134 * This value is or'ed into the attach args' interrupt level cookie
135 * if the interrupt level comes from an `intr' property, i.e. it is
136 * not an Sbus interrupt level.
137 */
138 #define SBUS_INTR_COMPAT 0x80000000
139
140
141 /*
142 * Print the location of some sbus-attached device (called just
143 * before attaching that device). If `sbus' is not NULL, the
144 * device was found but not configured; print the sbus as well.
145 * Return UNCONF (config_find ignores this if the device was configured).
146 */
147 int
148 sbus_print(args, busname)
149 void *args;
150 const char *busname;
151 {
152 struct sbus_attach_args *sa = args;
153 int i;
154
155 if (busname)
156 aprint_normal("%s at %s", sa->sa_name, busname);
157 aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
158 (u_long)sa->sa_offset);
159 for (i = 0; i < sa->sa_nintr; i++) {
160 struct openprom_intr *sbi = &sa->sa_intr[i];
161
162 aprint_normal(" vector %lx ipl %ld",
163 (u_long)sbi->oi_vec,
164 (long)INTLEV(sbi->oi_pri));
165 }
166 return (UNCONF);
167 }
168
169 int
170 sbus_match(parent, cf, aux)
171 struct device *parent;
172 struct cfdata *cf;
173 void *aux;
174 {
175 struct mainbus_attach_args *ma = aux;
176
177 return (strcmp(cf->cf_name, ma->ma_name) == 0);
178 }
179
180 /*
181 * Attach an Sbus.
182 */
183 void
184 sbus_attach(parent, self, aux)
185 struct device *parent;
186 struct device *self;
187 void *aux;
188 {
189 struct sbus_softc *sc = (struct sbus_softc *)self;
190 struct mainbus_attach_args *ma = aux;
191 struct intrhand *ih;
192 int ipl;
193 char *name;
194 int node = ma->ma_node;
195 int node0, error;
196 bus_space_tag_t sbt;
197 struct sbus_attach_args sa;
198
199 sc->sc_bustag = ma->ma_bustag;
200 sc->sc_dmatag = ma->ma_dmatag;
201 sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
202
203 /* XXXX Use sysio PROM mappings for interrupt vector regs. */
204 sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh);
205 sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
206 sc->sc_bh);
207
208 #ifdef _LP64
209 /*
210 * 32-bit kernels use virtual addresses for bus space operations
211 * so we may as well use the prom VA.
212 *
213 * 64-bit kernels use physical addresses for bus space operations
214 * so mapping this in again will reduce TLB thrashing.
215 */
216 if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
217 ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
218 printf("%s: cannot map registers\n", self->dv_xname);
219 return;
220 }
221 #endif
222
223 /*
224 * Record clock frequency for synchronous SCSI.
225 * IS THIS THE CORRECT DEFAULT??
226 */
227 sc->sc_clockfreq = PROM_getpropint(node, "clock-frequency",
228 25*1000*1000);
229 printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
230
231 sbt = sbus_alloc_bustag(sc);
232 sc->sc_dmatag = sbus_alloc_dmatag(sc);
233
234 /*
235 * Get the SBus burst transfer size if burst transfers are supported
236 */
237 sc->sc_burst = PROM_getpropint(node, "burst-sizes", 0);
238
239 /*
240 * Collect address translations from the OBP.
241 */
242 error = PROM_getprop(node, "ranges", sizeof(struct openprom_range),
243 &sc->sc_nrange, (void **)&sc->sc_range);
244 if (error)
245 panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
246
247 /* initialize the IOMMU */
248
249 /* punch in our copies */
250 sc->sc_is.is_bustag = sc->sc_bustag;
251 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
252 (vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
253 sizeof (struct iommureg), &sc->sc_is.is_iommu);
254
255 /* initialize our strbuf_ctl */
256 sc->sc_is.is_sb[0] = &sc->sc_sb;
257 sc->sc_sb.sb_is = &sc->sc_is;
258 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
259 (vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
260 sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
261 /* Point sb_flush to our flush buffer. */
262 sc->sc_sb.sb_flush = &sc->sc_flush;
263
264 /* give us a nice name.. */
265 name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
266 if (name == 0)
267 panic("couldn't malloc iommu name");
268 snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname);
269
270 iommu_init(name, &sc->sc_is, 0, -1);
271
272 /* Enable the over temp intr */
273 ih = (struct intrhand *)
274 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
275 ih->ih_map = &sc->sc_sysio->therm_int_map;
276 ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
277 ih->ih_fun = sbus_overtemp;
278 ipl = 1;
279 ih->ih_pil = (1<<ipl);
280 ih->ih_number = INTVEC(*(ih->ih_map));
281 intr_establish(ipl, ih);
282 *(ih->ih_map) |= INTMAP_V;
283
284 /*
285 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
286 * NULL DMA pointer will be translated by the first page of the IOTSB.
287 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
288 */
289 {
290 u_long dummy;
291
292 if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
293 sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
294 PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
295 (u_long *)&dummy) != 0)
296 panic("sbus iommu: can't toss first dvma page");
297 }
298
299 /*
300 * Loop through ROM children, fixing any relative addresses
301 * and then configuring each device.
302 * `specials' is an array of device names that are treated
303 * specially:
304 */
305 node0 = OF_child(node);
306 for (node = node0; node; node = OF_peer(node)) {
307 char *name = PROM_getpropstring(node, "name");
308
309 if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
310 node, &sa) != 0) {
311 printf("sbus_attach: %s: incomplete\n", name);
312 continue;
313 }
314 (void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
315 sbus_destroy_attach_args(&sa);
316 }
317 }
318
319 int
320 sbus_setup_attach_args(sc, bustag, dmatag, node, sa)
321 struct sbus_softc *sc;
322 bus_space_tag_t bustag;
323 bus_dma_tag_t dmatag;
324 int node;
325 struct sbus_attach_args *sa;
326 {
327 /*struct openprom_addr sbusreg;*/
328 /*int base;*/
329 int error;
330 int n;
331
332 bzero(sa, sizeof(struct sbus_attach_args));
333 error = PROM_getprop(node, "name", 1, &n, (void **)&sa->sa_name);
334 if (error != 0)
335 return (error);
336 sa->sa_name[n] = '\0';
337
338 sa->sa_bustag = bustag;
339 sa->sa_dmatag = dmatag;
340 sa->sa_node = node;
341 sa->sa_frequency = sc->sc_clockfreq;
342
343 error = PROM_getprop(node, "reg", sizeof(struct openprom_addr),
344 &sa->sa_nreg, (void **)&sa->sa_reg);
345 if (error != 0) {
346 char buf[32];
347 if (error != ENOENT ||
348 !node_has_property(node, "device_type") ||
349 strcmp(PROM_getpropstringA(node, "device_type", buf),
350 "hierarchical") != 0)
351 return (error);
352 }
353 for (n = 0; n < sa->sa_nreg; n++) {
354 /* Convert to relative addressing, if necessary */
355 u_int32_t base = sa->sa_reg[n].oa_base;
356 if (SBUS_ABS(base)) {
357 sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
358 sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
359 }
360 }
361
362 if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
363 sa->sa_slot)) != 0)
364 return (error);
365
366 error = PROM_getprop(node, "address", sizeof(u_int32_t),
367 &sa->sa_npromvaddrs, (void **)&sa->sa_promvaddrs);
368 if (error != 0 && error != ENOENT)
369 return (error);
370
371 return (0);
372 }
373
374 void
375 sbus_destroy_attach_args(sa)
376 struct sbus_attach_args *sa;
377 {
378 if (sa->sa_name != NULL)
379 free(sa->sa_name, M_DEVBUF);
380
381 if (sa->sa_nreg != 0)
382 free(sa->sa_reg, M_DEVBUF);
383
384 if (sa->sa_intr)
385 free(sa->sa_intr, M_DEVBUF);
386
387 if (sa->sa_promvaddrs)
388 free((void *)sa->sa_promvaddrs, M_DEVBUF);
389
390 bzero(sa, sizeof(struct sbus_attach_args)); /*DEBUG*/
391 }
392
393
394 int
395 _sbus_bus_map(t, addr, size, flags, v, hp)
396 bus_space_tag_t t;
397 bus_addr_t addr;
398 bus_size_t size;
399 int flags;
400 vaddr_t v;
401 bus_space_handle_t *hp;
402 {
403 struct sbus_softc *sc = t->cookie;
404 int64_t slot = BUS_ADDR_IOSPACE(addr);
405 int64_t offset = BUS_ADDR_PADDR(addr);
406 int i;
407
408 for (i = 0; i < sc->sc_nrange; i++) {
409 bus_addr_t paddr;
410
411 if (sc->sc_range[i].or_child_space != slot)
412 continue;
413
414 /* We've found the connection to the parent bus */
415 paddr = sc->sc_range[i].or_parent_base + offset;
416 paddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32);
417 DPRINTF(SDB_DVMA,
418 ("\n_sbus_bus_map: mapping paddr slot %lx offset %lx poffset %lx paddr %lx\n",
419 (long)slot, (long)offset,
420 (long)sc->sc_range[i].or_parent_base,
421 (long)paddr));
422 return (bus_space_map(sc->sc_bustag, paddr, size, flags, hp));
423 }
424
425 return (EINVAL);
426 }
427
428
429 bus_addr_t
430 sbus_bus_addr(t, btype, offset)
431 bus_space_tag_t t;
432 u_int btype;
433 u_int offset;
434 {
435 bus_addr_t baddr;
436 int slot = btype;
437 struct sbus_softc *sc = t->cookie;
438 int i;
439
440 for (i = 0; i < sc->sc_nrange; i++) {
441 if (sc->sc_range[i].or_child_space != slot)
442 continue;
443
444 baddr = sc->sc_range[i].or_parent_base + offset;
445 baddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32);
446 }
447
448 return (baddr);
449 }
450
451
452 /*
453 * Each attached device calls sbus_establish after it initializes
454 * its sbusdev portion.
455 */
456 void
457 sbus_establish(sd, dev)
458 register struct sbusdev *sd;
459 register struct device *dev;
460 {
461 register struct sbus_softc *sc;
462 register struct device *curdev;
463
464 /*
465 * We have to look for the sbus by name, since it is not necessarily
466 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
467 * We don't just use the device structure of the above-attached
468 * sbus, since we might (in the future) support multiple sbus's.
469 */
470 for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
471 if (!curdev || !curdev->dv_xname)
472 panic("sbus_establish: can't find sbus parent for %s",
473 sd->sd_dev->dv_xname
474 ? sd->sd_dev->dv_xname
475 : "<unknown>" );
476
477 if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
478 break;
479 }
480 sc = (struct sbus_softc *) curdev;
481
482 sd->sd_dev = dev;
483 sd->sd_bchain = sc->sc_sbdev;
484 sc->sc_sbdev = sd;
485 }
486
487 /*
488 * Reset the given sbus.
489 */
490 void
491 sbusreset(sbus)
492 int sbus;
493 {
494 register struct sbusdev *sd;
495 struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
496 struct device *dev;
497
498 printf("reset %s:", sc->sc_dev.dv_xname);
499 for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
500 if (sd->sd_reset) {
501 dev = sd->sd_dev;
502 (*sd->sd_reset)(dev);
503 printf(" %s", dev->dv_xname);
504 }
505 }
506 /* Reload iommu regs */
507 iommu_reset(&sc->sc_is);
508 }
509
510 /*
511 * Handle an overtemp situation.
512 *
513 * SPARCs have temperature sensors which generate interrupts
514 * if the machine's temperature exceeds a certain threshold.
515 * This handles the interrupt and powers off the machine.
516 * The same needs to be done to PCI controller drivers.
517 */
518 int
519 sbus_overtemp(arg)
520 void *arg;
521 {
522 /* Should try a clean shutdown first */
523 printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
524 delay(20);
525 cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
526 }
527
528 /*
529 * Get interrupt attributes for an Sbus device.
530 */
531 int
532 sbus_get_intr(sc, node, ipp, np, slot)
533 struct sbus_softc *sc;
534 int node;
535 struct openprom_intr **ipp;
536 int *np;
537 int slot;
538 {
539 int *ipl;
540 int n, i;
541 char buf[32];
542
543 /*
544 * The `interrupts' property contains the Sbus interrupt level.
545 */
546 ipl = NULL;
547 if (PROM_getprop(node, "interrupts", sizeof(int), np, (void **)&ipl) == 0) {
548 struct openprom_intr *ip;
549 int pri;
550
551 /* Default to interrupt level 2 -- otherwise unused */
552 pri = INTLEVENCODE(2);
553
554 /* Change format to an `struct sbus_intr' array */
555 ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
556 M_NOWAIT);
557 if (ip == NULL)
558 return (ENOMEM);
559
560 /*
561 * Now things get ugly. We need to take this value which is
562 * the interrupt vector number and encode the IPL into it
563 * somehow. Luckily, the interrupt vector has lots of free
564 * space and we can easily stuff the IPL in there for a while.
565 */
566 PROM_getpropstringA(node, "device_type", buf);
567 if (!buf[0])
568 PROM_getpropstringA(node, "name", buf);
569
570 for (i = 0; intrmap[i].in_class; i++)
571 if (strcmp(intrmap[i].in_class, buf) == 0) {
572 pri = INTLEVENCODE(intrmap[i].in_lev);
573 break;
574 }
575
576 /*
577 * Sbus card devices need the slot number encoded into
578 * the vector as this is generally not done.
579 */
580 if ((ipl[0] & INTMAP_OBIO) == 0)
581 pri |= slot << 3;
582
583 for (n = 0; n < *np; n++) {
584 /*
585 * We encode vector and priority into sbi_pri so we
586 * can pass them as a unit. This will go away if
587 * sbus_establish ever takes an sbus_intr instead
588 * of an integer level.
589 * Stuff the real vector in sbi_vec.
590 */
591
592 ip[n].oi_pri = pri|ipl[n];
593 ip[n].oi_vec = ipl[n];
594 }
595 free(ipl, M_DEVBUF);
596 *ipp = ip;
597 }
598
599 return (0);
600 }
601
602
603 /*
604 * Install an interrupt handler for an Sbus device.
605 */
606 void *
607 sbus_intr_establish(t, pri, level, handler, arg, fastvec)
608 bus_space_tag_t t;
609 int pri;
610 int level;
611 int (*handler) __P((void *));
612 void *arg;
613 void (*fastvec) __P((void)); /* ignored */
614 {
615 struct sbus_softc *sc = t->cookie;
616 struct intrhand *ih;
617 int ipl;
618 long vec = pri;
619
620 ih = (struct intrhand *)
621 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
622 if (ih == NULL)
623 return (NULL);
624
625 if ((vec & SBUS_INTR_COMPAT) != 0)
626 ipl = vec & ~SBUS_INTR_COMPAT;
627 else {
628 /* Decode and remove IPL */
629 ipl = INTLEV(vec);
630 vec = INTVEC(vec);
631 DPRINTF(SDB_INTR,
632 ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
633 (long)ipl, (long)vec, (u_long)intrlev[vec]));
634 if ((vec & INTMAP_OBIO) == 0) {
635 /* We're in an SBUS slot */
636 /* Register the map and clear intr registers */
637
638 int slot = INTSLOT(pri);
639
640 ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
641 ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
642 #ifdef DEBUG
643 if (sbus_debug & SDB_INTR) {
644 int64_t intrmap = *ih->ih_map;
645
646 printf("SBUS %lx IRQ as %llx in slot %d\n",
647 (long)vec, (long long)intrmap, slot);
648 printf("\tmap addr %p clr addr %p\n",
649 ih->ih_map, ih->ih_clr);
650 }
651 #endif
652 /* Enable the interrupt */
653 vec |= INTMAP_V;
654 /* Insert IGN */
655 vec |= sc->sc_ign;
656 /* XXXX */
657 *(ih->ih_map) = vec;
658 } else {
659 int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
660 int64_t intrmap = 0;
661 int i;
662
663 /* Insert IGN */
664 vec |= sc->sc_ign;
665 for (i = 0; &intrptr[i] <=
666 (int64_t *)&sc->sc_sysio->reserved_int_map &&
667 INTVEC(intrmap = intrptr[i]) != INTVEC(vec); i++)
668 ;
669 if (INTVEC(intrmap) == INTVEC(vec)) {
670 DPRINTF(SDB_INTR,
671 ("OBIO %lx IRQ as %lx in slot %d\n",
672 vec, (long)intrmap, i));
673 /* Register the map and clear intr registers */
674 ih->ih_map = &intrptr[i];
675 intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
676 ih->ih_clr = &intrptr[i];
677 /* Enable the interrupt */
678 intrmap |= INTMAP_V;
679 /* XXXX */
680 *(ih->ih_map) = intrmap;
681 } else
682 panic("IRQ not found!");
683 }
684 }
685 #ifdef DEBUG
686 if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
687 #endif
688
689 ih->ih_fun = handler;
690 ih->ih_arg = arg;
691 ih->ih_number = vec;
692 ih->ih_pil = (1<<ipl);
693 intr_establish(ipl, ih);
694 return (ih);
695 }
696
697 static bus_space_tag_t
698 sbus_alloc_bustag(sc)
699 struct sbus_softc *sc;
700 {
701 bus_space_tag_t sbt;
702
703 sbt = (bus_space_tag_t)
704 malloc(sizeof(struct sparc_bus_space_tag), M_DEVBUF, M_NOWAIT);
705 if (sbt == NULL)
706 return (NULL);
707
708 bzero(sbt, sizeof *sbt);
709 sbt->cookie = sc;
710 sbt->parent = sc->sc_bustag;
711 sbt->type = SBUS_BUS_SPACE;
712 sbt->sparc_bus_map = _sbus_bus_map;
713 sbt->sparc_bus_mmap = sc->sc_bustag->sparc_bus_mmap;
714 sbt->sparc_intr_establish = sbus_intr_establish;
715 return (sbt);
716 }
717
718
719 static bus_dma_tag_t
720 sbus_alloc_dmatag(sc)
721 struct sbus_softc *sc;
722 {
723 bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
724
725 sdt = (bus_dma_tag_t)
726 malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
727 if (sdt == NULL)
728 /* Panic? */
729 return (psdt);
730
731 sdt->_cookie = sc;
732 sdt->_parent = psdt;
733 #define PCOPY(x) sdt->x = psdt->x
734 PCOPY(_dmamap_create);
735 PCOPY(_dmamap_destroy);
736 sdt->_dmamap_load = sbus_dmamap_load;
737 PCOPY(_dmamap_load_mbuf);
738 PCOPY(_dmamap_load_uio);
739 sdt->_dmamap_load_raw = sbus_dmamap_load_raw;
740 sdt->_dmamap_unload = sbus_dmamap_unload;
741 sdt->_dmamap_sync = sbus_dmamap_sync;
742 sdt->_dmamem_alloc = sbus_dmamem_alloc;
743 sdt->_dmamem_free = sbus_dmamem_free;
744 sdt->_dmamem_map = sbus_dmamem_map;
745 sdt->_dmamem_unmap = sbus_dmamem_unmap;
746 PCOPY(_dmamem_mmap);
747 #undef PCOPY
748 sc->sc_dmatag = sdt;
749 return (sdt);
750 }
751
752 int
753 sbus_dmamap_load(tag, map, buf, buflen, p, flags)
754 bus_dma_tag_t tag;
755 bus_dmamap_t map;
756 void *buf;
757 bus_size_t buflen;
758 struct proc *p;
759 int flags;
760 {
761 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
762
763 return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags));
764 }
765
766 int
767 sbus_dmamap_load_raw(tag, map, segs, nsegs, size, flags)
768 bus_dma_tag_t tag;
769 bus_dmamap_t map;
770 bus_dma_segment_t *segs;
771 int nsegs;
772 bus_size_t size;
773 int flags;
774 {
775 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
776
777 return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size));
778 }
779
780 void
781 sbus_dmamap_unload(tag, map)
782 bus_dma_tag_t tag;
783 bus_dmamap_t map;
784 {
785 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
786
787 iommu_dvmamap_unload(tag, &sc->sc_sb, map);
788 }
789
790 void
791 sbus_dmamap_sync(tag, map, offset, len, ops)
792 bus_dma_tag_t tag;
793 bus_dmamap_t map;
794 bus_addr_t offset;
795 bus_size_t len;
796 int ops;
797 {
798 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
799
800 if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) {
801 /* Flush the CPU then the IOMMU */
802 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
803 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
804 }
805 if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) {
806 /* Flush the IOMMU then the CPU */
807 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
808 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
809 }
810 }
811
812 int
813 sbus_dmamem_alloc(tag, size, alignment, boundary, segs, nsegs, rsegs, flags)
814 bus_dma_tag_t tag;
815 bus_size_t size;
816 bus_size_t alignment;
817 bus_size_t boundary;
818 bus_dma_segment_t *segs;
819 int nsegs;
820 int *rsegs;
821 int flags;
822 {
823 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
824
825 return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary,
826 segs, nsegs, rsegs, flags));
827 }
828
829 void
830 sbus_dmamem_free(tag, segs, nsegs)
831 bus_dma_tag_t tag;
832 bus_dma_segment_t *segs;
833 int nsegs;
834 {
835 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
836
837 iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs);
838 }
839
840 int
841 sbus_dmamem_map(tag, segs, nsegs, size, kvap, flags)
842 bus_dma_tag_t tag;
843 bus_dma_segment_t *segs;
844 int nsegs;
845 size_t size;
846 caddr_t *kvap;
847 int flags;
848 {
849 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
850
851 return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags));
852 }
853
854 void
855 sbus_dmamem_unmap(tag, kva, size)
856 bus_dma_tag_t tag;
857 caddr_t kva;
858 size_t size;
859 {
860 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
861
862 iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size);
863 }
864