sbus.c revision 1.68 1 /* $NetBSD: sbus.c,v 1.68 2004/03/21 12:50:14 martin Exp $ */
2
3 /*
4 * Copyright (c) 1999-2002 Eduardo Horvath
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31
32 /*
33 * Sbus stuff.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.68 2004/03/21 12:50:14 martin Exp $");
38
39 #include "opt_ddb.h"
40
41 #include <sys/param.h>
42 #include <sys/extent.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45 #include <sys/device.h>
46 #include <sys/reboot.h>
47
48 #include <machine/bus.h>
49 #include <machine/openfirm.h>
50
51 #include <sparc64/sparc64/cache.h>
52 #include <sparc64/dev/iommureg.h>
53 #include <sparc64/dev/iommuvar.h>
54 #include <sparc64/dev/sbusreg.h>
55 #include <dev/sbus/sbusvar.h>
56
57 #include <uvm/uvm_extern.h>
58
59 #include <machine/autoconf.h>
60 #include <machine/cpu.h>
61 #include <machine/sparc64.h>
62
63 #ifdef DEBUG
64 #define SDB_DVMA 0x1
65 #define SDB_INTR 0x2
66 int sbus_debug = 0;
67 #define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0)
68 #else
69 #define DPRINTF(l, s)
70 #endif
71
72 void sbusreset __P((int));
73
74 static bus_space_tag_t sbus_alloc_bustag __P((struct sbus_softc *));
75 static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *));
76 static int sbus_get_intr __P((struct sbus_softc *, int,
77 struct openprom_intr **, int *, int));
78 static int sbus_overtemp __P((void *));
79 static int _sbus_bus_map __P((
80 bus_space_tag_t,
81 bus_addr_t, /*offset*/
82 bus_size_t, /*size*/
83 int, /*flags*/
84 vaddr_t, /* XXX unused -- compat w/sparc */
85 bus_space_handle_t *));
86 static void *sbus_intr_establish __P((
87 bus_space_tag_t,
88 int, /*Sbus interrupt level*/
89 int, /*`device class' priority*/
90 int (*) __P((void *)), /*handler*/
91 void *, /*handler arg*/
92 void (*) __P((void)))); /*optional fast trap*/
93
94
95 /* autoconfiguration driver */
96 int sbus_match __P((struct device *, struct cfdata *, void *));
97 void sbus_attach __P((struct device *, struct device *, void *));
98
99
100 CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
101 sbus_match, sbus_attach, NULL, NULL);
102
103 extern struct cfdriver sbus_cd;
104
105 /*
106 * DVMA routines
107 */
108 int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
109 bus_size_t, struct proc *, int));
110 void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
111 int sbus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
112 bus_dma_segment_t *, int, bus_size_t, int));
113 void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
114 bus_size_t, int));
115 int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
116 bus_size_t alignment, bus_size_t boundary,
117 bus_dma_segment_t *segs, int nsegs, int *rsegs,
118 int flags));
119 void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
120 int nsegs));
121 int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
122 int nsegs, size_t size, caddr_t *kvap, int flags));
123 void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
124 size_t size));
125
126 /*
127 * Child devices receive the Sbus interrupt level in their attach
128 * arguments. We translate these to CPU IPLs using the following
129 * tables. Note: obio bus interrupt levels are identical to the
130 * processor IPL.
131 *
132 * The second set of tables is used when the Sbus interrupt level
133 * cannot be had from the PROM as an `interrupt' property. We then
134 * fall back on the `intr' property which contains the CPU IPL.
135 */
136
137 /*
138 * This value is or'ed into the attach args' interrupt level cookie
139 * if the interrupt level comes from an `intr' property, i.e. it is
140 * not an Sbus interrupt level.
141 */
142 #define SBUS_INTR_COMPAT 0x80000000
143
144
145 /*
146 * Print the location of some sbus-attached device (called just
147 * before attaching that device). If `sbus' is not NULL, the
148 * device was found but not configured; print the sbus as well.
149 * Return UNCONF (config_find ignores this if the device was configured).
150 */
151 int
152 sbus_print(args, busname)
153 void *args;
154 const char *busname;
155 {
156 struct sbus_attach_args *sa = args;
157 int i;
158
159 if (busname)
160 aprint_normal("%s at %s", sa->sa_name, busname);
161 aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
162 (u_long)sa->sa_offset);
163 for (i = 0; i < sa->sa_nintr; i++) {
164 struct openprom_intr *sbi = &sa->sa_intr[i];
165
166 aprint_normal(" vector %lx ipl %ld",
167 (u_long)sbi->oi_vec,
168 (long)INTLEV(sbi->oi_pri));
169 }
170 return (UNCONF);
171 }
172
173 int
174 sbus_match(parent, cf, aux)
175 struct device *parent;
176 struct cfdata *cf;
177 void *aux;
178 {
179 struct mainbus_attach_args *ma = aux;
180
181 return (strcmp(cf->cf_name, ma->ma_name) == 0);
182 }
183
184 /*
185 * Attach an Sbus.
186 */
187 void
188 sbus_attach(parent, self, aux)
189 struct device *parent;
190 struct device *self;
191 void *aux;
192 {
193 struct sbus_softc *sc = (struct sbus_softc *)self;
194 struct mainbus_attach_args *ma = aux;
195 struct intrhand *ih;
196 int ipl;
197 char *name;
198 int node = ma->ma_node;
199 int node0, error;
200 bus_space_tag_t sbt;
201 struct sbus_attach_args sa;
202
203 sc->sc_bustag = ma->ma_bustag;
204 sc->sc_dmatag = ma->ma_dmatag;
205 sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
206
207 /* XXXX Use sysio PROM mappings for interrupt vector regs. */
208 sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh);
209 sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
210 sc->sc_bh);
211
212 #ifdef _LP64
213 /*
214 * 32-bit kernels use virtual addresses for bus space operations
215 * so we may as well use the prom VA.
216 *
217 * 64-bit kernels use physical addresses for bus space operations
218 * so mapping this in again will reduce TLB thrashing.
219 */
220 if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
221 ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
222 printf("%s: cannot map registers\n", self->dv_xname);
223 return;
224 }
225 #endif
226
227 /*
228 * Record clock frequency for synchronous SCSI.
229 * IS THIS THE CORRECT DEFAULT??
230 */
231 sc->sc_clockfreq = prom_getpropint(node, "clock-frequency",
232 25*1000*1000);
233 printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
234
235 sbt = sbus_alloc_bustag(sc);
236 sc->sc_dmatag = sbus_alloc_dmatag(sc);
237
238 /*
239 * Get the SBus burst transfer size if burst transfers are supported
240 */
241 sc->sc_burst = prom_getpropint(node, "burst-sizes", 0);
242
243 /*
244 * Collect address translations from the OBP.
245 */
246 error = prom_getprop(node, "ranges", sizeof(struct openprom_range),
247 &sc->sc_nrange, &sc->sc_range);
248 if (error)
249 panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
250
251 /* initialize the IOMMU */
252
253 /* punch in our copies */
254 sc->sc_is.is_bustag = sc->sc_bustag;
255 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
256 (vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
257 sizeof (struct iommureg), &sc->sc_is.is_iommu);
258
259 /* initialize our strbuf_ctl */
260 sc->sc_is.is_sb[0] = &sc->sc_sb;
261 sc->sc_sb.sb_is = &sc->sc_is;
262 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
263 (vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
264 sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
265 /* Point sb_flush to our flush buffer. */
266 sc->sc_sb.sb_flush = &sc->sc_flush;
267
268 /* give us a nice name.. */
269 name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
270 if (name == 0)
271 panic("couldn't malloc iommu name");
272 snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname);
273
274 iommu_init(name, &sc->sc_is, 0, -1);
275
276 /* Enable the over temp intr */
277 ih = (struct intrhand *)
278 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
279 ih->ih_map = &sc->sc_sysio->therm_int_map;
280 ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
281 ih->ih_fun = sbus_overtemp;
282 ipl = 1;
283 ih->ih_pil = (1<<ipl);
284 ih->ih_number = INTVEC(*(ih->ih_map));
285 intr_establish(ipl, ih);
286 *(ih->ih_map) |= INTMAP_V;
287
288 /*
289 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
290 * NULL DMA pointer will be translated by the first page of the IOTSB.
291 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
292 */
293 {
294 u_long dummy;
295
296 if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
297 sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
298 PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
299 (u_long *)&dummy) != 0)
300 panic("sbus iommu: can't toss first dvma page");
301 }
302
303 /*
304 * Loop through ROM children, fixing any relative addresses
305 * and then configuring each device.
306 * `specials' is an array of device names that are treated
307 * specially:
308 */
309 node0 = OF_child(node);
310 for (node = node0; node; node = OF_peer(node)) {
311 char *name = prom_getpropstring(node, "name");
312
313 if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
314 node, &sa) != 0) {
315 printf("sbus_attach: %s: incomplete\n", name);
316 continue;
317 }
318 (void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
319 sbus_destroy_attach_args(&sa);
320 }
321 }
322
323 int
324 sbus_setup_attach_args(sc, bustag, dmatag, node, sa)
325 struct sbus_softc *sc;
326 bus_space_tag_t bustag;
327 bus_dma_tag_t dmatag;
328 int node;
329 struct sbus_attach_args *sa;
330 {
331 /*struct openprom_addr sbusreg;*/
332 /*int base;*/
333 int error;
334 int n;
335
336 memset(sa, 0, sizeof(struct sbus_attach_args));
337 n = 0;
338 error = prom_getprop(node, "name", 1, &n, &sa->sa_name);
339 if (error != 0)
340 return (error);
341 sa->sa_name[n] = '\0';
342
343 sa->sa_bustag = bustag;
344 sa->sa_dmatag = dmatag;
345 sa->sa_node = node;
346 sa->sa_frequency = sc->sc_clockfreq;
347
348 error = prom_getprop(node, "reg", sizeof(struct openprom_addr),
349 &sa->sa_nreg, &sa->sa_reg);
350 if (error != 0) {
351 char buf[32];
352 if (error != ENOENT ||
353 !node_has_property(node, "device_type") ||
354 strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf),
355 "hierarchical") != 0)
356 return (error);
357 }
358 for (n = 0; n < sa->sa_nreg; n++) {
359 /* Convert to relative addressing, if necessary */
360 u_int32_t base = sa->sa_reg[n].oa_base;
361 if (SBUS_ABS(base)) {
362 sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
363 sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
364 }
365 }
366
367 if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
368 sa->sa_slot)) != 0)
369 return (error);
370
371 error = prom_getprop(node, "address", sizeof(u_int32_t),
372 &sa->sa_npromvaddrs, &sa->sa_promvaddrs);
373 if (error != 0 && error != ENOENT)
374 return (error);
375
376 return (0);
377 }
378
379 void
380 sbus_destroy_attach_args(sa)
381 struct sbus_attach_args *sa;
382 {
383 if (sa->sa_name != NULL)
384 free(sa->sa_name, M_DEVBUF);
385
386 if (sa->sa_nreg != 0)
387 free(sa->sa_reg, M_DEVBUF);
388
389 if (sa->sa_intr)
390 free(sa->sa_intr, M_DEVBUF);
391
392 if (sa->sa_promvaddrs)
393 free((void *)sa->sa_promvaddrs, M_DEVBUF);
394
395 memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/
396 }
397
398
399 int
400 _sbus_bus_map(t, addr, size, flags, v, hp)
401 bus_space_tag_t t;
402 bus_addr_t addr;
403 bus_size_t size;
404 int flags;
405 vaddr_t v;
406 bus_space_handle_t *hp;
407 {
408 struct sbus_softc *sc = t->cookie;
409 int64_t slot = BUS_ADDR_IOSPACE(addr);
410 int64_t offset = BUS_ADDR_PADDR(addr);
411 int i;
412
413 for (i = 0; i < sc->sc_nrange; i++) {
414 bus_addr_t paddr;
415
416 if (sc->sc_range[i].or_child_space != slot)
417 continue;
418
419 /* We've found the connection to the parent bus */
420 paddr = sc->sc_range[i].or_parent_base + offset;
421 paddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32);
422 DPRINTF(SDB_DVMA,
423 ("\n_sbus_bus_map: mapping paddr slot %lx offset %lx poffset %lx paddr %lx\n",
424 (long)slot, (long)offset,
425 (long)sc->sc_range[i].or_parent_base,
426 (long)paddr));
427 return (bus_space_map(sc->sc_bustag, paddr, size, flags, hp));
428 }
429
430 return (EINVAL);
431 }
432
433
434 bus_addr_t
435 sbus_bus_addr(t, btype, offset)
436 bus_space_tag_t t;
437 u_int btype;
438 u_int offset;
439 {
440 bus_addr_t baddr = 0;
441 int slot = btype;
442 struct sbus_softc *sc = t->cookie;
443 int i;
444
445 for (i = 0; i < sc->sc_nrange; i++) {
446 if (sc->sc_range[i].or_child_space != slot)
447 continue;
448
449 baddr = sc->sc_range[i].or_parent_base + offset;
450 baddr |= ((bus_addr_t)sc->sc_range[i].or_parent_space<<32);
451 }
452
453 return (baddr);
454 }
455
456
457 /*
458 * Each attached device calls sbus_establish after it initializes
459 * its sbusdev portion.
460 */
461 void
462 sbus_establish(sd, dev)
463 register struct sbusdev *sd;
464 register struct device *dev;
465 {
466 register struct sbus_softc *sc;
467 register struct device *curdev;
468
469 /*
470 * We have to look for the sbus by name, since it is not necessarily
471 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
472 * We don't just use the device structure of the above-attached
473 * sbus, since we might (in the future) support multiple sbus's.
474 */
475 for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
476 if (!curdev || !curdev->dv_xname)
477 panic("sbus_establish: can't find sbus parent for %s",
478 sd->sd_dev->dv_xname
479 ? sd->sd_dev->dv_xname
480 : "<unknown>" );
481
482 if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
483 break;
484 }
485 sc = (struct sbus_softc *) curdev;
486
487 sd->sd_dev = dev;
488 sd->sd_bchain = sc->sc_sbdev;
489 sc->sc_sbdev = sd;
490 }
491
492 /*
493 * Reset the given sbus.
494 */
495 void
496 sbusreset(sbus)
497 int sbus;
498 {
499 register struct sbusdev *sd;
500 struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
501 struct device *dev;
502
503 printf("reset %s:", sc->sc_dev.dv_xname);
504 for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
505 if (sd->sd_reset) {
506 dev = sd->sd_dev;
507 (*sd->sd_reset)(dev);
508 printf(" %s", dev->dv_xname);
509 }
510 }
511 /* Reload iommu regs */
512 iommu_reset(&sc->sc_is);
513 }
514
515 /*
516 * Handle an overtemp situation.
517 *
518 * SPARCs have temperature sensors which generate interrupts
519 * if the machine's temperature exceeds a certain threshold.
520 * This handles the interrupt and powers off the machine.
521 * The same needs to be done to PCI controller drivers.
522 */
523 int
524 sbus_overtemp(arg)
525 void *arg;
526 {
527 /* Should try a clean shutdown first */
528 printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
529 delay(20);
530 cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
531 }
532
533 /*
534 * Get interrupt attributes for an Sbus device.
535 */
536 int
537 sbus_get_intr(sc, node, ipp, np, slot)
538 struct sbus_softc *sc;
539 int node;
540 struct openprom_intr **ipp;
541 int *np;
542 int slot;
543 {
544 int *ipl;
545 int n, i;
546 char buf[32];
547
548 /*
549 * The `interrupts' property contains the Sbus interrupt level.
550 */
551 ipl = NULL;
552 if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) {
553 struct openprom_intr *ip;
554 int pri;
555
556 /* Default to interrupt level 2 -- otherwise unused */
557 pri = INTLEVENCODE(2);
558
559 /* Change format to an `struct sbus_intr' array */
560 ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
561 M_NOWAIT);
562 if (ip == NULL)
563 return (ENOMEM);
564
565 /*
566 * Now things get ugly. We need to take this value which is
567 * the interrupt vector number and encode the IPL into it
568 * somehow. Luckily, the interrupt vector has lots of free
569 * space and we can easily stuff the IPL in there for a while.
570 */
571 prom_getpropstringA(node, "device_type", buf, sizeof buf);
572 if (buf[0] == '\0')
573 prom_getpropstringA(node, "name", buf, sizeof buf);
574
575 for (i = 0; intrmap[i].in_class; i++)
576 if (strcmp(intrmap[i].in_class, buf) == 0) {
577 pri = INTLEVENCODE(intrmap[i].in_lev);
578 break;
579 }
580
581 /*
582 * Sbus card devices need the slot number encoded into
583 * the vector as this is generally not done.
584 */
585 if ((ipl[0] & INTMAP_OBIO) == 0)
586 pri |= slot << 3;
587
588 for (n = 0; n < *np; n++) {
589 /*
590 * We encode vector and priority into sbi_pri so we
591 * can pass them as a unit. This will go away if
592 * sbus_establish ever takes an sbus_intr instead
593 * of an integer level.
594 * Stuff the real vector in sbi_vec.
595 */
596
597 ip[n].oi_pri = pri|ipl[n];
598 ip[n].oi_vec = ipl[n];
599 }
600 free(ipl, M_DEVBUF);
601 *ipp = ip;
602 }
603
604 return (0);
605 }
606
607
608 /*
609 * Install an interrupt handler for an Sbus device.
610 */
611 void *
612 sbus_intr_establish(t, pri, level, handler, arg, fastvec)
613 bus_space_tag_t t;
614 int pri;
615 int level;
616 int (*handler) __P((void *));
617 void *arg;
618 void (*fastvec) __P((void)); /* ignored */
619 {
620 struct sbus_softc *sc = t->cookie;
621 struct intrhand *ih;
622 int ipl;
623 long vec = pri;
624
625 ih = (struct intrhand *)
626 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
627 if (ih == NULL)
628 return (NULL);
629
630 if ((vec & SBUS_INTR_COMPAT) != 0)
631 ipl = vec & ~SBUS_INTR_COMPAT;
632 else {
633 /* Decode and remove IPL */
634 ipl = INTLEV(vec);
635 vec = INTVEC(vec);
636 DPRINTF(SDB_INTR,
637 ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
638 (long)ipl, (long)vec, (u_long)intrlev[vec]));
639 if ((vec & INTMAP_OBIO) == 0) {
640 /* We're in an SBUS slot */
641 /* Register the map and clear intr registers */
642
643 int slot = INTSLOT(pri);
644
645 ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
646 ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
647 #ifdef DEBUG
648 if (sbus_debug & SDB_INTR) {
649 int64_t intrmap = *ih->ih_map;
650
651 printf("SBUS %lx IRQ as %llx in slot %d\n",
652 (long)vec, (long long)intrmap, slot);
653 printf("\tmap addr %p clr addr %p\n",
654 ih->ih_map, ih->ih_clr);
655 }
656 #endif
657 /* Enable the interrupt */
658 vec |= INTMAP_V | sc->sc_ign |
659 (CPU_UPAID << INTMAP_TID_SHIFT);
660 *(ih->ih_map) = vec;
661 } else {
662 int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
663 int64_t intrmap = 0;
664 int i;
665
666 /* Insert IGN */
667 vec |= sc->sc_ign;
668 for (i = 0; &intrptr[i] <=
669 (int64_t *)&sc->sc_sysio->reserved_int_map &&
670 INTVEC(intrmap = intrptr[i]) != INTVEC(vec); i++)
671 ;
672 if (INTVEC(intrmap) == INTVEC(vec)) {
673 DPRINTF(SDB_INTR,
674 ("OBIO %lx IRQ as %lx in slot %d\n",
675 vec, (long)intrmap, i));
676 /* Register the map and clear intr registers */
677 ih->ih_map = &intrptr[i];
678 intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
679 ih->ih_clr = &intrptr[i];
680 /* Enable the interrupt */
681 intrmap |= INTMAP_V;
682 /* XXXX */
683 *(ih->ih_map) = intrmap;
684 } else
685 panic("IRQ not found!");
686 }
687 }
688 #ifdef DEBUG
689 if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
690 #endif
691
692 ih->ih_fun = handler;
693 ih->ih_arg = arg;
694 ih->ih_number = vec;
695 ih->ih_pil = (1<<ipl);
696 intr_establish(ipl, ih);
697 return (ih);
698 }
699
700 static bus_space_tag_t
701 sbus_alloc_bustag(sc)
702 struct sbus_softc *sc;
703 {
704 bus_space_tag_t sbt;
705
706 sbt = (bus_space_tag_t)
707 malloc(sizeof(struct sparc_bus_space_tag), M_DEVBUF, M_NOWAIT);
708 if (sbt == NULL)
709 return (NULL);
710
711 memset(sbt, 0, sizeof *sbt);
712 sbt->cookie = sc;
713 sbt->parent = sc->sc_bustag;
714 sbt->type = SBUS_BUS_SPACE;
715 sbt->sparc_bus_map = _sbus_bus_map;
716 sbt->sparc_bus_mmap = sc->sc_bustag->sparc_bus_mmap;
717 sbt->sparc_intr_establish = sbus_intr_establish;
718 return (sbt);
719 }
720
721
722 static bus_dma_tag_t
723 sbus_alloc_dmatag(sc)
724 struct sbus_softc *sc;
725 {
726 bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
727
728 sdt = (bus_dma_tag_t)
729 malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
730 if (sdt == NULL)
731 /* Panic? */
732 return (psdt);
733
734 sdt->_cookie = sc;
735 sdt->_parent = psdt;
736 #define PCOPY(x) sdt->x = psdt->x
737 PCOPY(_dmamap_create);
738 PCOPY(_dmamap_destroy);
739 sdt->_dmamap_load = sbus_dmamap_load;
740 PCOPY(_dmamap_load_mbuf);
741 PCOPY(_dmamap_load_uio);
742 sdt->_dmamap_load_raw = sbus_dmamap_load_raw;
743 sdt->_dmamap_unload = sbus_dmamap_unload;
744 sdt->_dmamap_sync = sbus_dmamap_sync;
745 sdt->_dmamem_alloc = sbus_dmamem_alloc;
746 sdt->_dmamem_free = sbus_dmamem_free;
747 sdt->_dmamem_map = sbus_dmamem_map;
748 sdt->_dmamem_unmap = sbus_dmamem_unmap;
749 PCOPY(_dmamem_mmap);
750 #undef PCOPY
751 sc->sc_dmatag = sdt;
752 return (sdt);
753 }
754
755 int
756 sbus_dmamap_load(tag, map, buf, buflen, p, flags)
757 bus_dma_tag_t tag;
758 bus_dmamap_t map;
759 void *buf;
760 bus_size_t buflen;
761 struct proc *p;
762 int flags;
763 {
764 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
765
766 return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags));
767 }
768
769 int
770 sbus_dmamap_load_raw(tag, map, segs, nsegs, size, flags)
771 bus_dma_tag_t tag;
772 bus_dmamap_t map;
773 bus_dma_segment_t *segs;
774 int nsegs;
775 bus_size_t size;
776 int flags;
777 {
778 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
779
780 return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size));
781 }
782
783 void
784 sbus_dmamap_unload(tag, map)
785 bus_dma_tag_t tag;
786 bus_dmamap_t map;
787 {
788 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
789
790 iommu_dvmamap_unload(tag, &sc->sc_sb, map);
791 }
792
793 void
794 sbus_dmamap_sync(tag, map, offset, len, ops)
795 bus_dma_tag_t tag;
796 bus_dmamap_t map;
797 bus_addr_t offset;
798 bus_size_t len;
799 int ops;
800 {
801 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
802
803 if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) {
804 /* Flush the CPU then the IOMMU */
805 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
806 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
807 }
808 if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) {
809 /* Flush the IOMMU then the CPU */
810 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
811 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
812 }
813 }
814
815 int
816 sbus_dmamem_alloc(tag, size, alignment, boundary, segs, nsegs, rsegs, flags)
817 bus_dma_tag_t tag;
818 bus_size_t size;
819 bus_size_t alignment;
820 bus_size_t boundary;
821 bus_dma_segment_t *segs;
822 int nsegs;
823 int *rsegs;
824 int flags;
825 {
826 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
827
828 return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary,
829 segs, nsegs, rsegs, flags));
830 }
831
832 void
833 sbus_dmamem_free(tag, segs, nsegs)
834 bus_dma_tag_t tag;
835 bus_dma_segment_t *segs;
836 int nsegs;
837 {
838 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
839
840 iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs);
841 }
842
843 int
844 sbus_dmamem_map(tag, segs, nsegs, size, kvap, flags)
845 bus_dma_tag_t tag;
846 bus_dma_segment_t *segs;
847 int nsegs;
848 size_t size;
849 caddr_t *kvap;
850 int flags;
851 {
852 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
853
854 return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags));
855 }
856
857 void
858 sbus_dmamem_unmap(tag, kva, size)
859 bus_dma_tag_t tag;
860 caddr_t kva;
861 size_t size;
862 {
863 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
864
865 iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size);
866 }
867