sbus.c revision 1.69 1 /* $NetBSD: sbus.c,v 1.69 2004/06/30 21:37:49 pk Exp $ */
2
3 /*
4 * Copyright (c) 1999-2002 Eduardo Horvath
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31
32 /*
33 * Sbus stuff.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.69 2004/06/30 21:37:49 pk Exp $");
38
39 #include "opt_ddb.h"
40
41 #include <sys/param.h>
42 #include <sys/extent.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45 #include <sys/device.h>
46 #include <sys/reboot.h>
47
48 #include <machine/bus.h>
49 #include <machine/openfirm.h>
50
51 #include <sparc64/sparc64/cache.h>
52 #include <sparc64/dev/iommureg.h>
53 #include <sparc64/dev/iommuvar.h>
54 #include <sparc64/dev/sbusreg.h>
55 #include <dev/sbus/sbusvar.h>
56
57 #include <uvm/uvm_extern.h>
58
59 #include <machine/autoconf.h>
60 #include <machine/cpu.h>
61 #include <machine/sparc64.h>
62
63 #ifdef DEBUG
64 #define SDB_DVMA 0x1
65 #define SDB_INTR 0x2
66 int sbus_debug = 0;
67 #define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0)
68 #else
69 #define DPRINTF(l, s)
70 #endif
71
72 void sbusreset __P((int));
73
74 static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *));
75 static int sbus_get_intr __P((struct sbus_softc *, int,
76 struct openprom_intr **, int *, int));
77 static int sbus_overtemp __P((void *));
78 static int _sbus_bus_map __P((
79 bus_space_tag_t,
80 bus_addr_t, /*offset*/
81 bus_size_t, /*size*/
82 int, /*flags*/
83 vaddr_t, /* XXX unused -- compat w/sparc */
84 bus_space_handle_t *));
85 static void *sbus_intr_establish __P((
86 bus_space_tag_t,
87 int, /*Sbus interrupt level*/
88 int, /*`device class' priority*/
89 int (*) __P((void *)), /*handler*/
90 void *, /*handler arg*/
91 void (*) __P((void)))); /*optional fast trap*/
92
93
94 /* autoconfiguration driver */
95 int sbus_match __P((struct device *, struct cfdata *, void *));
96 void sbus_attach __P((struct device *, struct device *, void *));
97
98
99 CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
100 sbus_match, sbus_attach, NULL, NULL);
101
102 extern struct cfdriver sbus_cd;
103
104 /*
105 * DVMA routines
106 */
107 int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
108 bus_size_t, struct proc *, int));
109 void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
110 int sbus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
111 bus_dma_segment_t *, int, bus_size_t, int));
112 void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
113 bus_size_t, int));
114 int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
115 bus_size_t alignment, bus_size_t boundary,
116 bus_dma_segment_t *segs, int nsegs, int *rsegs,
117 int flags));
118 void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
119 int nsegs));
120 int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
121 int nsegs, size_t size, caddr_t *kvap, int flags));
122 void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
123 size_t size));
124
125 /*
126 * Child devices receive the Sbus interrupt level in their attach
127 * arguments. We translate these to CPU IPLs using the following
128 * tables. Note: obio bus interrupt levels are identical to the
129 * processor IPL.
130 *
131 * The second set of tables is used when the Sbus interrupt level
132 * cannot be had from the PROM as an `interrupt' property. We then
133 * fall back on the `intr' property which contains the CPU IPL.
134 */
135
136 /*
137 * This value is or'ed into the attach args' interrupt level cookie
138 * if the interrupt level comes from an `intr' property, i.e. it is
139 * not an Sbus interrupt level.
140 */
141 #define SBUS_INTR_COMPAT 0x80000000
142
143
144 /*
145 * Print the location of some sbus-attached device (called just
146 * before attaching that device). If `sbus' is not NULL, the
147 * device was found but not configured; print the sbus as well.
148 * Return UNCONF (config_find ignores this if the device was configured).
149 */
150 int
151 sbus_print(args, busname)
152 void *args;
153 const char *busname;
154 {
155 struct sbus_attach_args *sa = args;
156 int i;
157
158 if (busname)
159 aprint_normal("%s at %s", sa->sa_name, busname);
160 aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
161 (u_long)sa->sa_offset);
162 for (i = 0; i < sa->sa_nintr; i++) {
163 struct openprom_intr *sbi = &sa->sa_intr[i];
164
165 aprint_normal(" vector %lx ipl %ld",
166 (u_long)sbi->oi_vec,
167 (long)INTLEV(sbi->oi_pri));
168 }
169 return (UNCONF);
170 }
171
172 int
173 sbus_match(parent, cf, aux)
174 struct device *parent;
175 struct cfdata *cf;
176 void *aux;
177 {
178 struct mainbus_attach_args *ma = aux;
179
180 return (strcmp(cf->cf_name, ma->ma_name) == 0);
181 }
182
183 /*
184 * Attach an Sbus.
185 */
186 void
187 sbus_attach(parent, self, aux)
188 struct device *parent;
189 struct device *self;
190 void *aux;
191 {
192 struct sbus_softc *sc = (struct sbus_softc *)self;
193 struct mainbus_attach_args *ma = aux;
194 struct intrhand *ih;
195 int ipl;
196 char *name;
197 int node = ma->ma_node;
198 int node0, error;
199 bus_space_tag_t sbt;
200 struct sbus_attach_args sa;
201
202 sc->sc_bustag = ma->ma_bustag;
203 sc->sc_dmatag = ma->ma_dmatag;
204 sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
205
206 /* XXXX Use sysio PROM mappings for interrupt vector regs. */
207 sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh);
208 sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
209 sc->sc_bh);
210
211 #ifdef _LP64
212 /*
213 * 32-bit kernels use virtual addresses for bus space operations
214 * so we may as well use the prom VA.
215 *
216 * 64-bit kernels use physical addresses for bus space operations
217 * so mapping this in again will reduce TLB thrashing.
218 */
219 if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
220 ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
221 printf("%s: cannot map registers\n", self->dv_xname);
222 return;
223 }
224 #endif
225
226 /*
227 * Record clock frequency for synchronous SCSI.
228 * IS THIS THE CORRECT DEFAULT??
229 */
230 sc->sc_clockfreq = prom_getpropint(node, "clock-frequency",
231 25*1000*1000);
232 printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
233
234 sbt = bus_space_tag_alloc(sc->sc_bustag, sc);
235 sbt->type = SBUS_BUS_SPACE;
236 sbt->sparc_bus_map = _sbus_bus_map;
237 sbt->sparc_intr_establish = sbus_intr_establish;
238
239 sc->sc_dmatag = sbus_alloc_dmatag(sc);
240
241 /*
242 * Get the SBus burst transfer size if burst transfers are supported
243 */
244 sc->sc_burst = prom_getpropint(node, "burst-sizes", 0);
245
246 /*
247 * Collect address translations from the OBP.
248 */
249 error = prom_getprop(node, "ranges", sizeof(struct openprom_range),
250 &sbt->nranges, &sbt->ranges);
251 if (error)
252 panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
253
254 /* initialize the IOMMU */
255
256 /* punch in our copies */
257 sc->sc_is.is_bustag = sc->sc_bustag;
258 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
259 (vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
260 sizeof (struct iommureg), &sc->sc_is.is_iommu);
261
262 /* initialize our strbuf_ctl */
263 sc->sc_is.is_sb[0] = &sc->sc_sb;
264 sc->sc_sb.sb_is = &sc->sc_is;
265 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
266 (vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
267 sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
268 /* Point sb_flush to our flush buffer. */
269 sc->sc_sb.sb_flush = &sc->sc_flush;
270
271 /* give us a nice name.. */
272 name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
273 if (name == 0)
274 panic("couldn't malloc iommu name");
275 snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname);
276
277 iommu_init(name, &sc->sc_is, 0, -1);
278
279 /* Enable the over temp intr */
280 ih = (struct intrhand *)
281 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
282 ih->ih_map = &sc->sc_sysio->therm_int_map;
283 ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
284 ih->ih_fun = sbus_overtemp;
285 ipl = 1;
286 ih->ih_pil = (1<<ipl);
287 ih->ih_number = INTVEC(*(ih->ih_map));
288 intr_establish(ipl, ih);
289 *(ih->ih_map) |= INTMAP_V;
290
291 /*
292 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
293 * NULL DMA pointer will be translated by the first page of the IOTSB.
294 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
295 */
296 {
297 u_long dummy;
298
299 if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
300 sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
301 PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
302 (u_long *)&dummy) != 0)
303 panic("sbus iommu: can't toss first dvma page");
304 }
305
306 /*
307 * Loop through ROM children, fixing any relative addresses
308 * and then configuring each device.
309 * `specials' is an array of device names that are treated
310 * specially:
311 */
312 node0 = OF_child(node);
313 for (node = node0; node; node = OF_peer(node)) {
314 char *name = prom_getpropstring(node, "name");
315
316 if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
317 node, &sa) != 0) {
318 printf("sbus_attach: %s: incomplete\n", name);
319 continue;
320 }
321 (void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
322 sbus_destroy_attach_args(&sa);
323 }
324 }
325
326 int
327 sbus_setup_attach_args(sc, bustag, dmatag, node, sa)
328 struct sbus_softc *sc;
329 bus_space_tag_t bustag;
330 bus_dma_tag_t dmatag;
331 int node;
332 struct sbus_attach_args *sa;
333 {
334 /*struct openprom_addr sbusreg;*/
335 /*int base;*/
336 int error;
337 int n;
338
339 memset(sa, 0, sizeof(struct sbus_attach_args));
340 n = 0;
341 error = prom_getprop(node, "name", 1, &n, &sa->sa_name);
342 if (error != 0)
343 return (error);
344 sa->sa_name[n] = '\0';
345
346 sa->sa_bustag = bustag;
347 sa->sa_dmatag = dmatag;
348 sa->sa_node = node;
349 sa->sa_frequency = sc->sc_clockfreq;
350
351 error = prom_getprop(node, "reg", sizeof(struct openprom_addr),
352 &sa->sa_nreg, &sa->sa_reg);
353 if (error != 0) {
354 char buf[32];
355 if (error != ENOENT ||
356 !node_has_property(node, "device_type") ||
357 strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf),
358 "hierarchical") != 0)
359 return (error);
360 }
361 for (n = 0; n < sa->sa_nreg; n++) {
362 /* Convert to relative addressing, if necessary */
363 u_int32_t base = sa->sa_reg[n].oa_base;
364 if (SBUS_ABS(base)) {
365 sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
366 sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
367 }
368 }
369
370 if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
371 sa->sa_slot)) != 0)
372 return (error);
373
374 error = prom_getprop(node, "address", sizeof(u_int32_t),
375 &sa->sa_npromvaddrs, &sa->sa_promvaddrs);
376 if (error != 0 && error != ENOENT)
377 return (error);
378
379 return (0);
380 }
381
382 void
383 sbus_destroy_attach_args(sa)
384 struct sbus_attach_args *sa;
385 {
386 if (sa->sa_name != NULL)
387 free(sa->sa_name, M_DEVBUF);
388
389 if (sa->sa_nreg != 0)
390 free(sa->sa_reg, M_DEVBUF);
391
392 if (sa->sa_intr)
393 free(sa->sa_intr, M_DEVBUF);
394
395 if (sa->sa_promvaddrs)
396 free((void *)sa->sa_promvaddrs, M_DEVBUF);
397
398 memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/
399 }
400
401
402 int
403 _sbus_bus_map(t, addr, size, flags, v, hp)
404 bus_space_tag_t t;
405 bus_addr_t addr;
406 bus_size_t size;
407 int flags;
408 vaddr_t v;
409 bus_space_handle_t *hp;
410 {
411 int error;
412
413 if ((error = bus_space_translate_address_generic(
414 t->ranges, t->nranges, &addr)) != 0)
415 return (error);
416
417 return (bus_space_map(t->parent, addr, size, flags, hp));
418 }
419
420
421 bus_addr_t
422 sbus_bus_addr(t, btype, offset)
423 bus_space_tag_t t;
424 u_int btype;
425 u_int offset;
426 {
427 int slot = btype;
428 struct openprom_range *rp;
429 int i;
430
431 for (i = 0; i < t->nranges; i++) {
432 rp = &t->ranges[i];
433 if (rp->or_child_space != slot)
434 continue;
435
436 return BUS_ADDR(rp->or_parent_base + offset,
437 rp->or_parent_space);
438 }
439
440 return (0);
441 }
442
443
444 /*
445 * Each attached device calls sbus_establish after it initializes
446 * its sbusdev portion.
447 */
448 void
449 sbus_establish(sd, dev)
450 register struct sbusdev *sd;
451 register struct device *dev;
452 {
453 register struct sbus_softc *sc;
454 register struct device *curdev;
455
456 /*
457 * We have to look for the sbus by name, since it is not necessarily
458 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
459 * We don't just use the device structure of the above-attached
460 * sbus, since we might (in the future) support multiple sbus's.
461 */
462 for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
463 if (!curdev || !curdev->dv_xname)
464 panic("sbus_establish: can't find sbus parent for %s",
465 sd->sd_dev->dv_xname
466 ? sd->sd_dev->dv_xname
467 : "<unknown>" );
468
469 if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
470 break;
471 }
472 sc = (struct sbus_softc *) curdev;
473
474 sd->sd_dev = dev;
475 sd->sd_bchain = sc->sc_sbdev;
476 sc->sc_sbdev = sd;
477 }
478
479 /*
480 * Reset the given sbus.
481 */
482 void
483 sbusreset(sbus)
484 int sbus;
485 {
486 register struct sbusdev *sd;
487 struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
488 struct device *dev;
489
490 printf("reset %s:", sc->sc_dev.dv_xname);
491 for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
492 if (sd->sd_reset) {
493 dev = sd->sd_dev;
494 (*sd->sd_reset)(dev);
495 printf(" %s", dev->dv_xname);
496 }
497 }
498 /* Reload iommu regs */
499 iommu_reset(&sc->sc_is);
500 }
501
502 /*
503 * Handle an overtemp situation.
504 *
505 * SPARCs have temperature sensors which generate interrupts
506 * if the machine's temperature exceeds a certain threshold.
507 * This handles the interrupt and powers off the machine.
508 * The same needs to be done to PCI controller drivers.
509 */
510 int
511 sbus_overtemp(arg)
512 void *arg;
513 {
514 /* Should try a clean shutdown first */
515 printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
516 delay(20);
517 cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
518 }
519
520 /*
521 * Get interrupt attributes for an Sbus device.
522 */
523 int
524 sbus_get_intr(sc, node, ipp, np, slot)
525 struct sbus_softc *sc;
526 int node;
527 struct openprom_intr **ipp;
528 int *np;
529 int slot;
530 {
531 int *ipl;
532 int n, i;
533 char buf[32];
534
535 /*
536 * The `interrupts' property contains the Sbus interrupt level.
537 */
538 ipl = NULL;
539 if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) {
540 struct openprom_intr *ip;
541 int pri;
542
543 /* Default to interrupt level 2 -- otherwise unused */
544 pri = INTLEVENCODE(2);
545
546 /* Change format to an `struct sbus_intr' array */
547 ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
548 M_NOWAIT);
549 if (ip == NULL)
550 return (ENOMEM);
551
552 /*
553 * Now things get ugly. We need to take this value which is
554 * the interrupt vector number and encode the IPL into it
555 * somehow. Luckily, the interrupt vector has lots of free
556 * space and we can easily stuff the IPL in there for a while.
557 */
558 prom_getpropstringA(node, "device_type", buf, sizeof buf);
559 if (buf[0] == '\0')
560 prom_getpropstringA(node, "name", buf, sizeof buf);
561
562 for (i = 0; intrmap[i].in_class; i++)
563 if (strcmp(intrmap[i].in_class, buf) == 0) {
564 pri = INTLEVENCODE(intrmap[i].in_lev);
565 break;
566 }
567
568 /*
569 * Sbus card devices need the slot number encoded into
570 * the vector as this is generally not done.
571 */
572 if ((ipl[0] & INTMAP_OBIO) == 0)
573 pri |= slot << 3;
574
575 for (n = 0; n < *np; n++) {
576 /*
577 * We encode vector and priority into sbi_pri so we
578 * can pass them as a unit. This will go away if
579 * sbus_establish ever takes an sbus_intr instead
580 * of an integer level.
581 * Stuff the real vector in sbi_vec.
582 */
583
584 ip[n].oi_pri = pri|ipl[n];
585 ip[n].oi_vec = ipl[n];
586 }
587 free(ipl, M_DEVBUF);
588 *ipp = ip;
589 }
590
591 return (0);
592 }
593
594
595 /*
596 * Install an interrupt handler for an Sbus device.
597 */
598 void *
599 sbus_intr_establish(t, pri, level, handler, arg, fastvec)
600 bus_space_tag_t t;
601 int pri;
602 int level;
603 int (*handler) __P((void *));
604 void *arg;
605 void (*fastvec) __P((void)); /* ignored */
606 {
607 struct sbus_softc *sc = t->cookie;
608 struct intrhand *ih;
609 int ipl;
610 long vec = pri;
611
612 ih = (struct intrhand *)
613 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
614 if (ih == NULL)
615 return (NULL);
616
617 if ((vec & SBUS_INTR_COMPAT) != 0)
618 ipl = vec & ~SBUS_INTR_COMPAT;
619 else {
620 /* Decode and remove IPL */
621 ipl = INTLEV(vec);
622 vec = INTVEC(vec);
623 DPRINTF(SDB_INTR,
624 ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
625 (long)ipl, (long)vec, (u_long)intrlev[vec]));
626 if ((vec & INTMAP_OBIO) == 0) {
627 /* We're in an SBUS slot */
628 /* Register the map and clear intr registers */
629
630 int slot = INTSLOT(pri);
631
632 ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
633 ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
634 #ifdef DEBUG
635 if (sbus_debug & SDB_INTR) {
636 int64_t intrmap = *ih->ih_map;
637
638 printf("SBUS %lx IRQ as %llx in slot %d\n",
639 (long)vec, (long long)intrmap, slot);
640 printf("\tmap addr %p clr addr %p\n",
641 ih->ih_map, ih->ih_clr);
642 }
643 #endif
644 /* Enable the interrupt */
645 vec |= INTMAP_V | sc->sc_ign |
646 (CPU_UPAID << INTMAP_TID_SHIFT);
647 *(ih->ih_map) = vec;
648 } else {
649 int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
650 int64_t intrmap = 0;
651 int i;
652
653 /* Insert IGN */
654 vec |= sc->sc_ign;
655 for (i = 0; &intrptr[i] <=
656 (int64_t *)&sc->sc_sysio->reserved_int_map &&
657 INTVEC(intrmap = intrptr[i]) != INTVEC(vec); i++)
658 ;
659 if (INTVEC(intrmap) == INTVEC(vec)) {
660 DPRINTF(SDB_INTR,
661 ("OBIO %lx IRQ as %lx in slot %d\n",
662 vec, (long)intrmap, i));
663 /* Register the map and clear intr registers */
664 ih->ih_map = &intrptr[i];
665 intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
666 ih->ih_clr = &intrptr[i];
667 /* Enable the interrupt */
668 intrmap |= INTMAP_V;
669 /* XXXX */
670 *(ih->ih_map) = intrmap;
671 } else
672 panic("IRQ not found!");
673 }
674 }
675 #ifdef DEBUG
676 if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
677 #endif
678
679 ih->ih_fun = handler;
680 ih->ih_arg = arg;
681 ih->ih_number = vec;
682 ih->ih_pil = (1<<ipl);
683 intr_establish(ipl, ih);
684 return (ih);
685 }
686
687 static bus_dma_tag_t
688 sbus_alloc_dmatag(sc)
689 struct sbus_softc *sc;
690 {
691 bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
692
693 sdt = (bus_dma_tag_t)
694 malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
695 if (sdt == NULL)
696 /* Panic? */
697 return (psdt);
698
699 sdt->_cookie = sc;
700 sdt->_parent = psdt;
701 #define PCOPY(x) sdt->x = psdt->x
702 PCOPY(_dmamap_create);
703 PCOPY(_dmamap_destroy);
704 sdt->_dmamap_load = sbus_dmamap_load;
705 PCOPY(_dmamap_load_mbuf);
706 PCOPY(_dmamap_load_uio);
707 sdt->_dmamap_load_raw = sbus_dmamap_load_raw;
708 sdt->_dmamap_unload = sbus_dmamap_unload;
709 sdt->_dmamap_sync = sbus_dmamap_sync;
710 sdt->_dmamem_alloc = sbus_dmamem_alloc;
711 sdt->_dmamem_free = sbus_dmamem_free;
712 sdt->_dmamem_map = sbus_dmamem_map;
713 sdt->_dmamem_unmap = sbus_dmamem_unmap;
714 PCOPY(_dmamem_mmap);
715 #undef PCOPY
716 sc->sc_dmatag = sdt;
717 return (sdt);
718 }
719
720 int
721 sbus_dmamap_load(tag, map, buf, buflen, p, flags)
722 bus_dma_tag_t tag;
723 bus_dmamap_t map;
724 void *buf;
725 bus_size_t buflen;
726 struct proc *p;
727 int flags;
728 {
729 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
730
731 return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags));
732 }
733
734 int
735 sbus_dmamap_load_raw(tag, map, segs, nsegs, size, flags)
736 bus_dma_tag_t tag;
737 bus_dmamap_t map;
738 bus_dma_segment_t *segs;
739 int nsegs;
740 bus_size_t size;
741 int flags;
742 {
743 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
744
745 return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size));
746 }
747
748 void
749 sbus_dmamap_unload(tag, map)
750 bus_dma_tag_t tag;
751 bus_dmamap_t map;
752 {
753 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
754
755 iommu_dvmamap_unload(tag, &sc->sc_sb, map);
756 }
757
758 void
759 sbus_dmamap_sync(tag, map, offset, len, ops)
760 bus_dma_tag_t tag;
761 bus_dmamap_t map;
762 bus_addr_t offset;
763 bus_size_t len;
764 int ops;
765 {
766 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
767
768 if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) {
769 /* Flush the CPU then the IOMMU */
770 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
771 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
772 }
773 if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) {
774 /* Flush the IOMMU then the CPU */
775 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
776 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
777 }
778 }
779
780 int
781 sbus_dmamem_alloc(tag, size, alignment, boundary, segs, nsegs, rsegs, flags)
782 bus_dma_tag_t tag;
783 bus_size_t size;
784 bus_size_t alignment;
785 bus_size_t boundary;
786 bus_dma_segment_t *segs;
787 int nsegs;
788 int *rsegs;
789 int flags;
790 {
791 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
792
793 return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary,
794 segs, nsegs, rsegs, flags));
795 }
796
797 void
798 sbus_dmamem_free(tag, segs, nsegs)
799 bus_dma_tag_t tag;
800 bus_dma_segment_t *segs;
801 int nsegs;
802 {
803 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
804
805 iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs);
806 }
807
808 int
809 sbus_dmamem_map(tag, segs, nsegs, size, kvap, flags)
810 bus_dma_tag_t tag;
811 bus_dma_segment_t *segs;
812 int nsegs;
813 size_t size;
814 caddr_t *kvap;
815 int flags;
816 {
817 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
818
819 return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags));
820 }
821
822 void
823 sbus_dmamem_unmap(tag, kva, size)
824 bus_dma_tag_t tag;
825 caddr_t kva;
826 size_t size;
827 {
828 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
829
830 iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size);
831 }
832