sbus.c revision 1.74 1 /* $NetBSD: sbus.c,v 1.74 2006/02/01 20:21:38 martin Exp $ */
2
3 /*
4 * Copyright (c) 1999-2002 Eduardo Horvath
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31
32 /*
33 * Sbus stuff.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: sbus.c,v 1.74 2006/02/01 20:21:38 martin Exp $");
38
39 #include "opt_ddb.h"
40
41 #include <sys/param.h>
42 #include <sys/extent.h>
43 #include <sys/malloc.h>
44 #include <sys/systm.h>
45 #include <sys/device.h>
46 #include <sys/reboot.h>
47
48 #include <machine/bus.h>
49 #include <machine/openfirm.h>
50
51 #include <sparc64/sparc64/cache.h>
52 #include <sparc64/dev/iommureg.h>
53 #include <sparc64/dev/iommuvar.h>
54 #include <sparc64/dev/sbusreg.h>
55 #include <dev/sbus/sbusvar.h>
56
57 #include <uvm/uvm_extern.h>
58
59 #include <machine/autoconf.h>
60 #include <machine/cpu.h>
61 #include <machine/sparc64.h>
62
63 #ifdef DEBUG
64 #define SDB_DVMA 0x1
65 #define SDB_INTR 0x2
66 int sbus_debug = 0;
67 #define DPRINTF(l, s) do { if (sbus_debug & l) printf s; } while (0)
68 #else
69 #define DPRINTF(l, s)
70 #endif
71
72 void sbusreset __P((int));
73
74 static bus_dma_tag_t sbus_alloc_dmatag __P((struct sbus_softc *));
75 static int sbus_get_intr __P((struct sbus_softc *, int,
76 struct openprom_intr **, int *, int));
77 static int sbus_overtemp __P((void *));
78 static int _sbus_bus_map __P((
79 bus_space_tag_t,
80 bus_addr_t, /*offset*/
81 bus_size_t, /*size*/
82 int, /*flags*/
83 vaddr_t, /* XXX unused -- compat w/sparc */
84 bus_space_handle_t *));
85 static void *sbus_intr_establish __P((
86 bus_space_tag_t,
87 int, /*Sbus interrupt level*/
88 int, /*`device class' priority*/
89 int (*) __P((void *)), /*handler*/
90 void *, /*handler arg*/
91 void (*) __P((void)))); /*optional fast trap*/
92
93
94 /* autoconfiguration driver */
95 int sbus_match __P((struct device *, struct cfdata *, void *));
96 void sbus_attach __P((struct device *, struct device *, void *));
97
98
99 CFATTACH_DECL(sbus, sizeof(struct sbus_softc),
100 sbus_match, sbus_attach, NULL, NULL);
101
102 extern struct cfdriver sbus_cd;
103
104 /*
105 * DVMA routines
106 */
107 int sbus_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
108 bus_size_t, struct proc *, int));
109 void sbus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
110 int sbus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t,
111 bus_dma_segment_t *, int, bus_size_t, int));
112 void sbus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
113 bus_size_t, int));
114 int sbus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size,
115 bus_size_t alignment, bus_size_t boundary,
116 bus_dma_segment_t *segs, int nsegs, int *rsegs,
117 int flags));
118 void sbus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
119 int nsegs));
120 int sbus_dmamem_map __P((bus_dma_tag_t tag, bus_dma_segment_t *segs,
121 int nsegs, size_t size, caddr_t *kvap, int flags));
122 void sbus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva,
123 size_t size));
124
125 /*
126 * Child devices receive the Sbus interrupt level in their attach
127 * arguments. We translate these to CPU IPLs using the following
128 * tables. Note: obio bus interrupt levels are identical to the
129 * processor IPL.
130 *
131 * The second set of tables is used when the Sbus interrupt level
132 * cannot be had from the PROM as an `interrupt' property. We then
133 * fall back on the `intr' property which contains the CPU IPL.
134 */
135
136 /*
137 * This value is or'ed into the attach args' interrupt level cookie
138 * if the interrupt level comes from an `intr' property, i.e. it is
139 * not an Sbus interrupt level.
140 */
141 #define SBUS_INTR_COMPAT 0x80000000
142
143
144 /*
145 * Print the location of some sbus-attached device (called just
146 * before attaching that device). If `sbus' is not NULL, the
147 * device was found but not configured; print the sbus as well.
148 * Return UNCONF (config_find ignores this if the device was configured).
149 */
150 int
151 sbus_print(args, busname)
152 void *args;
153 const char *busname;
154 {
155 struct sbus_attach_args *sa = args;
156 int i;
157
158 if (busname)
159 aprint_normal("%s at %s", sa->sa_name, busname);
160 aprint_normal(" slot %ld offset 0x%lx", (long)sa->sa_slot,
161 (u_long)sa->sa_offset);
162 for (i = 0; i < sa->sa_nintr; i++) {
163 struct openprom_intr *sbi = &sa->sa_intr[i];
164
165 aprint_normal(" vector %lx ipl %ld",
166 (u_long)sbi->oi_vec,
167 (long)INTLEV(sbi->oi_pri));
168 }
169 return (UNCONF);
170 }
171
172 int
173 sbus_match(parent, cf, aux)
174 struct device *parent;
175 struct cfdata *cf;
176 void *aux;
177 {
178 struct mainbus_attach_args *ma = aux;
179
180 return (strcmp(cf->cf_name, ma->ma_name) == 0);
181 }
182
183 /*
184 * Attach an Sbus.
185 */
186 void
187 sbus_attach(parent, self, aux)
188 struct device *parent;
189 struct device *self;
190 void *aux;
191 {
192 struct sbus_softc *sc = (struct sbus_softc *)self;
193 struct mainbus_attach_args *ma = aux;
194 struct intrhand *ih;
195 int ipl;
196 char *name;
197 int node = ma->ma_node;
198 int node0, error;
199 bus_space_tag_t sbt;
200 struct sbus_attach_args sa;
201
202 sc->sc_bustag = ma->ma_bustag;
203 sc->sc_dmatag = ma->ma_dmatag;
204 sc->sc_ign = ma->ma_interrupts[0] & INTMAP_IGN;
205
206 /* XXXX Use sysio PROM mappings for interrupt vector regs. */
207 sparc_promaddr_to_handle(sc->sc_bustag, ma->ma_address[0], &sc->sc_bh);
208 sc->sc_sysio = (struct sysioreg *)bus_space_vaddr(sc->sc_bustag,
209 sc->sc_bh);
210
211 #ifdef _LP64
212 /*
213 * 32-bit kernels use virtual addresses for bus space operations
214 * so we may as well use the prom VA.
215 *
216 * 64-bit kernels use physical addresses for bus space operations
217 * so mapping this in again will reduce TLB thrashing.
218 */
219 if (bus_space_map(sc->sc_bustag, ma->ma_reg[0].ur_paddr,
220 ma->ma_reg[0].ur_len, 0, &sc->sc_bh) != 0) {
221 printf("%s: cannot map registers\n", self->dv_xname);
222 return;
223 }
224 #endif
225
226 /*
227 * Record clock frequency for synchronous SCSI.
228 * IS THIS THE CORRECT DEFAULT??
229 */
230 sc->sc_clockfreq = prom_getpropint(node, "clock-frequency",
231 25*1000*1000);
232 printf(": clock = %s MHz\n", clockfreq(sc->sc_clockfreq));
233
234 sbt = bus_space_tag_alloc(sc->sc_bustag, sc);
235 sbt->type = SBUS_BUS_SPACE;
236 sbt->sparc_bus_map = _sbus_bus_map;
237 sbt->sparc_intr_establish = sbus_intr_establish;
238
239 sc->sc_dmatag = sbus_alloc_dmatag(sc);
240
241 /*
242 * Get the SBus burst transfer size if burst transfers are supported
243 */
244 sc->sc_burst = prom_getpropint(node, "burst-sizes", 0);
245
246 /*
247 * Collect address translations from the OBP.
248 */
249 error = prom_getprop(node, "ranges", sizeof(struct openprom_range),
250 &sbt->nranges, &sbt->ranges);
251 if (error)
252 panic("%s: error getting ranges property", sc->sc_dev.dv_xname);
253
254 /* initialize the IOMMU */
255
256 /* punch in our copies */
257 sc->sc_is.is_bustag = sc->sc_bustag;
258 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
259 (vaddr_t)&((struct sysioreg *)NULL)->sys_iommu,
260 sizeof (struct iommureg), &sc->sc_is.is_iommu);
261
262 /* initialize our strbuf_ctl */
263 sc->sc_is.is_sb[0] = &sc->sc_sb;
264 sc->sc_sb.sb_is = &sc->sc_is;
265 bus_space_subregion(sc->sc_bustag, sc->sc_bh,
266 (vaddr_t)&((struct sysioreg *)NULL)->sys_strbuf,
267 sizeof (struct iommu_strbuf), &sc->sc_sb.sb_sb);
268 /* Point sb_flush to our flush buffer. */
269 sc->sc_sb.sb_flush = &sc->sc_flush;
270
271 /* give us a nice name.. */
272 name = (char *)malloc(32, M_DEVBUF, M_NOWAIT);
273 if (name == 0)
274 panic("couldn't malloc iommu name");
275 snprintf(name, 32, "%s dvma", sc->sc_dev.dv_xname);
276
277 iommu_init(name, &sc->sc_is, 0, -1);
278
279 /* Enable the over temp intr */
280 ih = (struct intrhand *)
281 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
282 ih->ih_map = &sc->sc_sysio->therm_int_map;
283 ih->ih_clr = NULL; /* &sc->sc_sysio->therm_clr_int; */
284 ih->ih_fun = sbus_overtemp;
285 ipl = 1;
286 ih->ih_pil = (1<<ipl);
287 ih->ih_number = INTVEC(*(ih->ih_map));
288 intr_establish(ipl, ih);
289 *(ih->ih_map) |= INTMAP_V|(CPU_UPAID << INTMAP_TID_SHIFT);
290
291 /*
292 * Note: the stupid SBUS IOMMU ignores the high bits of an address, so a
293 * NULL DMA pointer will be translated by the first page of the IOTSB.
294 * To avoid bugs we'll alloc and ignore the first entry in the IOTSB.
295 */
296 {
297 u_long dummy;
298
299 if (extent_alloc_subregion(sc->sc_is.is_dvmamap,
300 sc->sc_is.is_dvmabase, sc->sc_is.is_dvmabase + PAGE_SIZE,
301 PAGE_SIZE, PAGE_SIZE, 0, EX_NOWAIT|EX_BOUNDZERO,
302 (u_long *)&dummy) != 0)
303 panic("sbus iommu: can't toss first dvma page");
304 }
305
306 /*
307 * Loop through ROM children, fixing any relative addresses
308 * and then configuring each device.
309 * `specials' is an array of device names that are treated
310 * specially:
311 */
312 node0 = OF_child(node);
313 for (node = node0; node; node = OF_peer(node)) {
314 char *name1 = prom_getpropstring(node, "name");
315
316 if (sbus_setup_attach_args(sc, sbt, sc->sc_dmatag,
317 node, &sa) != 0) {
318 printf("sbus_attach: %s: incomplete\n", name1);
319 continue;
320 }
321 (void) config_found(&sc->sc_dev, (void *)&sa, sbus_print);
322 sbus_destroy_attach_args(&sa);
323 }
324 }
325
326 int
327 sbus_setup_attach_args(sc, bustag, dmatag, node, sa)
328 struct sbus_softc *sc;
329 bus_space_tag_t bustag;
330 bus_dma_tag_t dmatag;
331 int node;
332 struct sbus_attach_args *sa;
333 {
334 /*struct openprom_addr sbusreg;*/
335 /*int base;*/
336 int error;
337 int n;
338
339 memset(sa, 0, sizeof(struct sbus_attach_args));
340 n = 0;
341 error = prom_getprop(node, "name", 1, &n, &sa->sa_name);
342 if (error != 0)
343 return (error);
344 sa->sa_name[n] = '\0';
345
346 sa->sa_bustag = bustag;
347 sa->sa_dmatag = dmatag;
348 sa->sa_node = node;
349 sa->sa_frequency = sc->sc_clockfreq;
350
351 error = prom_getprop(node, "reg", sizeof(struct openprom_addr),
352 &sa->sa_nreg, &sa->sa_reg);
353 if (error != 0) {
354 char buf[32];
355 if (error != ENOENT ||
356 !node_has_property(node, "device_type") ||
357 strcmp(prom_getpropstringA(node, "device_type", buf, sizeof buf),
358 "hierarchical") != 0)
359 return (error);
360 }
361 for (n = 0; n < sa->sa_nreg; n++) {
362 /* Convert to relative addressing, if necessary */
363 u_int32_t base = sa->sa_reg[n].oa_base;
364 if (SBUS_ABS(base)) {
365 sa->sa_reg[n].oa_space = SBUS_ABS_TO_SLOT(base);
366 sa->sa_reg[n].oa_base = SBUS_ABS_TO_OFFSET(base);
367 }
368 }
369
370 if ((error = sbus_get_intr(sc, node, &sa->sa_intr, &sa->sa_nintr,
371 sa->sa_slot)) != 0)
372 return (error);
373
374 error = prom_getprop(node, "address", sizeof(u_int32_t),
375 &sa->sa_npromvaddrs, &sa->sa_promvaddrs);
376 if (error != 0 && error != ENOENT)
377 return (error);
378
379 return (0);
380 }
381
382 void
383 sbus_destroy_attach_args(sa)
384 struct sbus_attach_args *sa;
385 {
386 if (sa->sa_name != NULL)
387 free(sa->sa_name, M_DEVBUF);
388
389 if (sa->sa_nreg != 0)
390 free(sa->sa_reg, M_DEVBUF);
391
392 if (sa->sa_intr)
393 free(sa->sa_intr, M_DEVBUF);
394
395 if (sa->sa_promvaddrs)
396 free((void *)sa->sa_promvaddrs, M_DEVBUF);
397
398 memset(sa, 0, sizeof(struct sbus_attach_args)); /*DEBUG*/
399 }
400
401
402 int
403 _sbus_bus_map(t, addr, size, flags, v, hp)
404 bus_space_tag_t t;
405 bus_addr_t addr;
406 bus_size_t size;
407 int flags;
408 vaddr_t v;
409 bus_space_handle_t *hp;
410 {
411 int error;
412
413 if (t->ranges != NULL) {
414 if ((error = bus_space_translate_address_generic(
415 t->ranges, t->nranges, &addr)) != 0)
416 return (error);
417 }
418
419 return (bus_space_map(t->parent, addr, size, flags, hp));
420 }
421
422
423 bus_addr_t
424 sbus_bus_addr(t, btype, offset)
425 bus_space_tag_t t;
426 u_int btype;
427 u_int offset;
428 {
429 int slot = btype;
430 struct openprom_range *rp;
431 int i;
432
433 for (i = 0; i < t->nranges; i++) {
434 rp = &t->ranges[i];
435 if (rp->or_child_space != slot)
436 continue;
437
438 return BUS_ADDR(rp->or_parent_space,
439 rp->or_parent_base + offset);
440 }
441
442 return (0);
443 }
444
445
446 /*
447 * Each attached device calls sbus_establish after it initializes
448 * its sbusdev portion.
449 */
450 void
451 sbus_establish(sd, dev)
452 register struct sbusdev *sd;
453 register struct device *dev;
454 {
455 register struct sbus_softc *sc;
456 register struct device *curdev;
457
458 /*
459 * We have to look for the sbus by name, since it is not necessarily
460 * our immediate parent (i.e. sun4m /iommu/sbus/espdma/esp)
461 * We don't just use the device structure of the above-attached
462 * sbus, since we might (in the future) support multiple sbus's.
463 */
464 for (curdev = dev->dv_parent; ; curdev = curdev->dv_parent) {
465 if (!curdev || !curdev->dv_xname)
466 panic("sbus_establish: can't find sbus parent for %s",
467 sd->sd_dev->dv_xname
468 ? sd->sd_dev->dv_xname
469 : "<unknown>" );
470
471 if (strncmp(curdev->dv_xname, "sbus", 4) == 0)
472 break;
473 }
474 sc = (struct sbus_softc *) curdev;
475
476 sd->sd_dev = dev;
477 sd->sd_bchain = sc->sc_sbdev;
478 sc->sc_sbdev = sd;
479 }
480
481 /*
482 * Reset the given sbus.
483 */
484 void
485 sbusreset(sbus)
486 int sbus;
487 {
488 register struct sbusdev *sd;
489 struct sbus_softc *sc = sbus_cd.cd_devs[sbus];
490 struct device *dev;
491
492 printf("reset %s:", sc->sc_dev.dv_xname);
493 for (sd = sc->sc_sbdev; sd != NULL; sd = sd->sd_bchain) {
494 if (sd->sd_reset) {
495 dev = sd->sd_dev;
496 (*sd->sd_reset)(dev);
497 printf(" %s", dev->dv_xname);
498 }
499 }
500 /* Reload iommu regs */
501 iommu_reset(&sc->sc_is);
502 }
503
504 /*
505 * Handle an overtemp situation.
506 *
507 * SPARCs have temperature sensors which generate interrupts
508 * if the machine's temperature exceeds a certain threshold.
509 * This handles the interrupt and powers off the machine.
510 * The same needs to be done to PCI controller drivers.
511 */
512 int
513 sbus_overtemp(arg)
514 void *arg;
515 {
516 /* Should try a clean shutdown first */
517 printf("DANGER: OVER TEMPERATURE detected\nShutting down...\n");
518 delay(20);
519 cpu_reboot(RB_POWERDOWN|RB_HALT, NULL);
520 }
521
522 /*
523 * Get interrupt attributes for an Sbus device.
524 */
525 int
526 sbus_get_intr(sc, node, ipp, np, slot)
527 struct sbus_softc *sc;
528 int node;
529 struct openprom_intr **ipp;
530 int *np;
531 int slot;
532 {
533 int *ipl;
534 int n, i;
535 char buf[32];
536
537 /*
538 * The `interrupts' property contains the Sbus interrupt level.
539 */
540 ipl = NULL;
541 if (prom_getprop(node, "interrupts", sizeof(int), np, &ipl) == 0) {
542 struct openprom_intr *ip;
543 int pri;
544
545 /* Default to interrupt level 2 -- otherwise unused */
546 pri = INTLEVENCODE(2);
547
548 /* Change format to an `struct sbus_intr' array */
549 ip = malloc(*np * sizeof(struct openprom_intr), M_DEVBUF,
550 M_NOWAIT);
551 if (ip == NULL)
552 return (ENOMEM);
553
554 /*
555 * Now things get ugly. We need to take this value which is
556 * the interrupt vector number and encode the IPL into it
557 * somehow. Luckily, the interrupt vector has lots of free
558 * space and we can easily stuff the IPL in there for a while.
559 */
560 prom_getpropstringA(node, "device_type", buf, sizeof buf);
561 if (buf[0] == '\0')
562 prom_getpropstringA(node, "name", buf, sizeof buf);
563
564 for (i = 0; intrmap[i].in_class; i++)
565 if (strcmp(intrmap[i].in_class, buf) == 0) {
566 pri = INTLEVENCODE(intrmap[i].in_lev);
567 break;
568 }
569
570 /*
571 * Sbus card devices need the slot number encoded into
572 * the vector as this is generally not done.
573 */
574 if ((ipl[0] & INTMAP_OBIO) == 0)
575 pri |= slot << 3;
576
577 for (n = 0; n < *np; n++) {
578 /*
579 * We encode vector and priority into sbi_pri so we
580 * can pass them as a unit. This will go away if
581 * sbus_establish ever takes an sbus_intr instead
582 * of an integer level.
583 * Stuff the real vector in sbi_vec.
584 */
585
586 ip[n].oi_pri = pri|ipl[n];
587 ip[n].oi_vec = ipl[n];
588 }
589 free(ipl, M_DEVBUF);
590 *ipp = ip;
591 }
592
593 return (0);
594 }
595
596
597 /*
598 * Install an interrupt handler for an Sbus device.
599 */
600 void *
601 sbus_intr_establish(t, pri, level, handler, arg, fastvec)
602 bus_space_tag_t t;
603 int pri;
604 int level;
605 int (*handler) __P((void *));
606 void *arg;
607 void (*fastvec) __P((void)); /* ignored */
608 {
609 struct sbus_softc *sc = t->cookie;
610 struct intrhand *ih;
611 int ipl;
612 long vec = pri;
613
614 ih = (struct intrhand *)
615 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
616 if (ih == NULL)
617 return (NULL);
618
619 if ((vec & SBUS_INTR_COMPAT) != 0)
620 ipl = vec & ~SBUS_INTR_COMPAT;
621 else {
622 /* Decode and remove IPL */
623 ipl = INTLEV(vec);
624 vec = INTVEC(vec);
625 DPRINTF(SDB_INTR,
626 ("\nsbus: intr[%ld]%lx: %lx\nHunting for IRQ...\n",
627 (long)ipl, (long)vec, (u_long)intrlev[vec]));
628 if ((vec & INTMAP_OBIO) == 0) {
629 /* We're in an SBUS slot */
630 /* Register the map and clear intr registers */
631
632 int slot = INTSLOT(pri);
633
634 ih->ih_map = &(&sc->sc_sysio->sbus_slot0_int)[slot];
635 ih->ih_clr = &sc->sc_sysio->sbus0_clr_int[vec];
636 #ifdef DEBUG
637 if (sbus_debug & SDB_INTR) {
638 int64_t imap = *ih->ih_map;
639
640 printf("SBUS %lx IRQ as %llx in slot %d\n",
641 (long)vec, (long long)imap, slot);
642 printf("\tmap addr %p clr addr %p\n",
643 ih->ih_map, ih->ih_clr);
644 }
645 #endif
646 /* Enable the interrupt */
647 vec |= INTMAP_V | sc->sc_ign |
648 (CPU_UPAID << INTMAP_TID_SHIFT);
649 *(ih->ih_map) = vec;
650 } else {
651 int64_t *intrptr = &sc->sc_sysio->scsi_int_map;
652 int64_t imap = 0;
653 int i;
654
655 /* Insert IGN */
656 vec |= sc->sc_ign;
657 for (i = 0; &intrptr[i] <=
658 (int64_t *)&sc->sc_sysio->reserved_int_map &&
659 INTVEC(imap = intrptr[i]) != INTVEC(vec); i++)
660 ;
661 if (INTVEC(imap) == INTVEC(vec)) {
662 DPRINTF(SDB_INTR,
663 ("OBIO %lx IRQ as %lx in slot %d\n",
664 vec, (long)imap, i));
665 /* Register the map and clear intr registers */
666 ih->ih_map = &intrptr[i];
667 intrptr = (int64_t *)&sc->sc_sysio->scsi_clr_int;
668 ih->ih_clr = &intrptr[i];
669 /* Enable the interrupt */
670 imap |= INTMAP_V
671 |(CPU_UPAID << INTMAP_TID_SHIFT);
672 /* XXXX */
673 *(ih->ih_map) = imap;
674 } else
675 panic("IRQ not found!");
676 }
677 }
678 #ifdef DEBUG
679 if (sbus_debug & SDB_INTR) { long i; for (i = 0; i < 400000000; i++); }
680 #endif
681
682 ih->ih_fun = handler;
683 ih->ih_arg = arg;
684 ih->ih_number = vec;
685 ih->ih_pil = (1<<ipl);
686 intr_establish(ipl, ih);
687 return (ih);
688 }
689
690 static bus_dma_tag_t
691 sbus_alloc_dmatag(sc)
692 struct sbus_softc *sc;
693 {
694 bus_dma_tag_t sdt, psdt = sc->sc_dmatag;
695
696 sdt = (bus_dma_tag_t)
697 malloc(sizeof(struct sparc_bus_dma_tag), M_DEVBUF, M_NOWAIT);
698 if (sdt == NULL)
699 /* Panic? */
700 return (psdt);
701
702 sdt->_cookie = sc;
703 sdt->_parent = psdt;
704 #define PCOPY(x) sdt->x = psdt->x
705 PCOPY(_dmamap_create);
706 PCOPY(_dmamap_destroy);
707 sdt->_dmamap_load = sbus_dmamap_load;
708 PCOPY(_dmamap_load_mbuf);
709 PCOPY(_dmamap_load_uio);
710 sdt->_dmamap_load_raw = sbus_dmamap_load_raw;
711 sdt->_dmamap_unload = sbus_dmamap_unload;
712 sdt->_dmamap_sync = sbus_dmamap_sync;
713 sdt->_dmamem_alloc = sbus_dmamem_alloc;
714 sdt->_dmamem_free = sbus_dmamem_free;
715 sdt->_dmamem_map = sbus_dmamem_map;
716 sdt->_dmamem_unmap = sbus_dmamem_unmap;
717 PCOPY(_dmamem_mmap);
718 #undef PCOPY
719 sc->sc_dmatag = sdt;
720 return (sdt);
721 }
722
723 int
724 sbus_dmamap_load(tag, map, buf, buflen, p, flags)
725 bus_dma_tag_t tag;
726 bus_dmamap_t map;
727 void *buf;
728 bus_size_t buflen;
729 struct proc *p;
730 int flags;
731 {
732 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
733
734 return (iommu_dvmamap_load(tag, &sc->sc_sb, map, buf, buflen, p, flags));
735 }
736
737 int
738 sbus_dmamap_load_raw(tag, map, segs, nsegs, size, flags)
739 bus_dma_tag_t tag;
740 bus_dmamap_t map;
741 bus_dma_segment_t *segs;
742 int nsegs;
743 bus_size_t size;
744 int flags;
745 {
746 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
747
748 return (iommu_dvmamap_load_raw(tag, &sc->sc_sb, map, segs, nsegs, flags, size));
749 }
750
751 void
752 sbus_dmamap_unload(tag, map)
753 bus_dma_tag_t tag;
754 bus_dmamap_t map;
755 {
756 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
757
758 iommu_dvmamap_unload(tag, &sc->sc_sb, map);
759 }
760
761 void
762 sbus_dmamap_sync(tag, map, offset, len, ops)
763 bus_dma_tag_t tag;
764 bus_dmamap_t map;
765 bus_addr_t offset;
766 bus_size_t len;
767 int ops;
768 {
769 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
770
771 if (ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) {
772 /* Flush the CPU then the IOMMU */
773 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
774 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
775 }
776 if (ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) {
777 /* Flush the IOMMU then the CPU */
778 iommu_dvmamap_sync(tag, &sc->sc_sb, map, offset, len, ops);
779 bus_dmamap_sync(tag->_parent, map, offset, len, ops);
780 }
781 }
782
783 int
784 sbus_dmamem_alloc(tag, size, alignment, boundary, segs, nsegs, rsegs, flags)
785 bus_dma_tag_t tag;
786 bus_size_t size;
787 bus_size_t alignment;
788 bus_size_t boundary;
789 bus_dma_segment_t *segs;
790 int nsegs;
791 int *rsegs;
792 int flags;
793 {
794 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
795
796 return (iommu_dvmamem_alloc(tag, &sc->sc_sb, size, alignment, boundary,
797 segs, nsegs, rsegs, flags));
798 }
799
800 void
801 sbus_dmamem_free(tag, segs, nsegs)
802 bus_dma_tag_t tag;
803 bus_dma_segment_t *segs;
804 int nsegs;
805 {
806 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
807
808 iommu_dvmamem_free(tag, &sc->sc_sb, segs, nsegs);
809 }
810
811 int
812 sbus_dmamem_map(tag, segs, nsegs, size, kvap, flags)
813 bus_dma_tag_t tag;
814 bus_dma_segment_t *segs;
815 int nsegs;
816 size_t size;
817 caddr_t *kvap;
818 int flags;
819 {
820 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
821
822 return (iommu_dvmamem_map(tag, &sc->sc_sb, segs, nsegs, size, kvap, flags));
823 }
824
825 void
826 sbus_dmamem_unmap(tag, kva, size)
827 bus_dma_tag_t tag;
828 caddr_t kva;
829 size_t size;
830 {
831 struct sbus_softc *sc = (struct sbus_softc *)tag->_cookie;
832
833 iommu_dvmamem_unmap(tag, &sc->sc_sb, kva, size);
834 }
835