zs.c revision 1.70 1 1.70 nakayama /* $NetBSD: zs.c,v 1.70 2011/03/12 11:43:38 nakayama Exp $ */
2 1.1 eeh
3 1.1 eeh /*-
4 1.1 eeh * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 eeh * All rights reserved.
6 1.1 eeh *
7 1.1 eeh * This code is derived from software contributed to The NetBSD Foundation
8 1.1 eeh * by Gordon W. Ross.
9 1.1 eeh *
10 1.1 eeh * Redistribution and use in source and binary forms, with or without
11 1.1 eeh * modification, are permitted provided that the following conditions
12 1.1 eeh * are met:
13 1.1 eeh * 1. Redistributions of source code must retain the above copyright
14 1.1 eeh * notice, this list of conditions and the following disclaimer.
15 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 eeh * notice, this list of conditions and the following disclaimer in the
17 1.1 eeh * documentation and/or other materials provided with the distribution.
18 1.1 eeh *
19 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 eeh * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 eeh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 eeh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 eeh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 eeh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 eeh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 eeh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 eeh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 eeh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 eeh * POSSIBILITY OF SUCH DAMAGE.
30 1.1 eeh */
31 1.1 eeh
32 1.1 eeh /*
33 1.1 eeh * Zilog Z8530 Dual UART driver (machine-dependent part)
34 1.1 eeh *
35 1.1 eeh * Runs two serial lines per chip using slave drivers.
36 1.1 eeh * Plain tty/async lines use the zs_async slave.
37 1.1 eeh * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
38 1.1 eeh */
39 1.47 lukem
40 1.47 lukem #include <sys/cdefs.h>
41 1.70 nakayama __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.70 2011/03/12 11:43:38 nakayama Exp $");
42 1.2 jonathan
43 1.2 jonathan #include "opt_ddb.h"
44 1.29 lukem #include "opt_kgdb.h"
45 1.1 eeh
46 1.1 eeh #include <sys/param.h>
47 1.1 eeh #include <sys/systm.h>
48 1.1 eeh #include <sys/conf.h>
49 1.1 eeh #include <sys/device.h>
50 1.1 eeh #include <sys/file.h>
51 1.1 eeh #include <sys/ioctl.h>
52 1.1 eeh #include <sys/kernel.h>
53 1.1 eeh #include <sys/proc.h>
54 1.1 eeh #include <sys/tty.h>
55 1.1 eeh #include <sys/time.h>
56 1.1 eeh #include <sys/syslog.h>
57 1.64 ad #include <sys/intr.h>
58 1.1 eeh
59 1.1 eeh #include <machine/autoconf.h>
60 1.1 eeh #include <machine/openfirm.h>
61 1.1 eeh #include <machine/cpu.h>
62 1.1 eeh #include <machine/eeprom.h>
63 1.1 eeh #include <machine/psl.h>
64 1.1 eeh #include <machine/z8530var.h>
65 1.1 eeh
66 1.1 eeh #include <dev/cons.h>
67 1.1 eeh #include <dev/ic/z8530reg.h>
68 1.26 eeh #include <dev/sun/kbd_ms_ttyvar.h>
69 1.16 mrg #include <ddb/db_output.h>
70 1.1 eeh
71 1.70 nakayama #include <dev/sbus/sbusvar.h>
72 1.1 eeh #include <sparc64/dev/cons.h>
73 1.1 eeh
74 1.65 tsutsui #include "ioconf.h"
75 1.1 eeh #include "kbd.h" /* NKBD */
76 1.26 eeh #include "ms.h" /* NMS */
77 1.1 eeh #include "zs.h" /* NZS */
78 1.1 eeh
79 1.1 eeh /* Make life easier for the initialized arrays here. */
80 1.1 eeh #if NZS < 3
81 1.1 eeh #undef NZS
82 1.1 eeh #define NZS 3
83 1.1 eeh #endif
84 1.1 eeh
85 1.1 eeh /*
86 1.1 eeh * Some warts needed by z8530tty.c -
87 1.1 eeh * The default parity REALLY needs to be the same as the PROM uses,
88 1.1 eeh * or you can not see messages done with printf during boot-up...
89 1.1 eeh */
90 1.1 eeh int zs_def_cflag = (CREAD | CS8 | HUPCL);
91 1.1 eeh
92 1.1 eeh /*
93 1.1 eeh * The Sun provides a 4.9152 MHz clock to the ZS chips.
94 1.1 eeh */
95 1.1 eeh #define PCLK (9600 * 512) /* PCLK pin input clock rate */
96 1.1 eeh
97 1.10 eeh #define ZS_DELAY()
98 1.1 eeh
99 1.1 eeh /* The layout of this is hardware-dependent (padding, order). */
100 1.1 eeh struct zschan {
101 1.65 tsutsui volatile uint8_t zc_csr; /* ctrl,status, and indirect access */
102 1.65 tsutsui uint8_t zc_xxx0;
103 1.65 tsutsui volatile uint8_t zc_data; /* data */
104 1.65 tsutsui uint8_t zc_xxx1;
105 1.1 eeh };
106 1.1 eeh struct zsdevice {
107 1.1 eeh /* Yes, they are backwards. */
108 1.1 eeh struct zschan zs_chan_b;
109 1.1 eeh struct zschan zs_chan_a;
110 1.1 eeh };
111 1.1 eeh
112 1.20 eeh /* ZS channel used as the console device (if any) */
113 1.20 eeh void *zs_conschan_get, *zs_conschan_put;
114 1.20 eeh
115 1.1 eeh /* Saved PROM mappings */
116 1.1 eeh static struct zsdevice *zsaddr[NZS];
117 1.1 eeh
118 1.65 tsutsui static uint8_t zs_init_reg[16] = {
119 1.1 eeh 0, /* 0: CMD (reset, etc.) */
120 1.1 eeh 0, /* 1: No interrupts yet. */
121 1.1 eeh 0, /* 2: IVECT */
122 1.1 eeh ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
123 1.1 eeh ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
124 1.1 eeh ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
125 1.1 eeh 0, /* 6: TXSYNC/SYNCLO */
126 1.1 eeh 0, /* 7: RXSYNC/SYNCHI */
127 1.1 eeh 0, /* 8: alias for data port */
128 1.1 eeh ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
129 1.1 eeh 0, /*10: Misc. TX/RX control bits */
130 1.1 eeh ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
131 1.7 mycroft ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
132 1.7 mycroft 0, /*13: BAUDHI (default=9600) */
133 1.1 eeh ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
134 1.6 mycroft ZSWR15_BREAK_IE,
135 1.1 eeh };
136 1.1 eeh
137 1.20 eeh /* Console ops */
138 1.57 cdi static int zscngetc(dev_t);
139 1.57 cdi static void zscnputc(dev_t, int);
140 1.57 cdi static void zscnpollc(dev_t, int);
141 1.20 eeh
142 1.20 eeh struct consdev zs_consdev = {
143 1.62 martin .cn_getc = zscngetc,
144 1.62 martin .cn_putc = zscnputc,
145 1.62 martin .cn_pollc = zscnpollc,
146 1.20 eeh };
147 1.1 eeh
148 1.1 eeh
149 1.1 eeh /****************************************************************
150 1.1 eeh * Autoconfig
151 1.1 eeh ****************************************************************/
152 1.1 eeh
153 1.1 eeh /* Definition of the driver for autoconfig. */
154 1.65 tsutsui static int zs_match_sbus(device_t, cfdata_t, void *);
155 1.65 tsutsui static void zs_attach_sbus(device_t, device_t, void *);
156 1.1 eeh
157 1.57 cdi static void zs_attach(struct zsc_softc *, struct zsdevice *, int);
158 1.57 cdi static int zs_print(void *, const char *);
159 1.1 eeh
160 1.65 tsutsui CFATTACH_DECL_NEW(zs, sizeof(struct zsc_softc),
161 1.48 petrov zs_match_sbus, zs_attach_sbus, NULL, NULL);
162 1.1 eeh
163 1.1 eeh /* Interrupt handlers. */
164 1.57 cdi int zscheckintr(void *);
165 1.57 cdi static int zshard(void *);
166 1.57 cdi static void zssoft(void *);
167 1.1 eeh
168 1.57 cdi static int zs_get_speed(struct zs_chanstate *);
169 1.1 eeh
170 1.20 eeh /* Console device support */
171 1.57 cdi static int zs_console_flags(int, int, int);
172 1.20 eeh
173 1.20 eeh /* Power management hooks */
174 1.57 cdi int zs_enable(struct zs_chanstate *);
175 1.57 cdi void zs_disable(struct zs_chanstate *);
176 1.1 eeh
177 1.55 macallan /* from dev/ic/z8530tty.c */
178 1.55 macallan struct tty *zstty_get_tty_from_dev(struct device *);
179 1.55 macallan
180 1.1 eeh /*
181 1.1 eeh * Is the zs chip present?
182 1.1 eeh */
183 1.1 eeh static int
184 1.65 tsutsui zs_match_sbus(device_t parent, cfdata_t cf, void *aux)
185 1.1 eeh {
186 1.1 eeh struct sbus_attach_args *sa = aux;
187 1.1 eeh
188 1.39 thorpej if (strcmp(cf->cf_name, sa->sa_name) != 0)
189 1.1 eeh return (0);
190 1.1 eeh
191 1.20 eeh return (1);
192 1.1 eeh }
193 1.1 eeh
194 1.1 eeh static void
195 1.65 tsutsui zs_attach_sbus(device_t parent, device_t self, void *aux)
196 1.1 eeh {
197 1.65 tsutsui struct zsc_softc *zsc = device_private(self);
198 1.1 eeh struct sbus_attach_args *sa = aux;
199 1.33 eeh bus_space_handle_t bh;
200 1.65 tsutsui int zs_unit;
201 1.65 tsutsui
202 1.65 tsutsui zsc->zsc_dev = self;
203 1.65 tsutsui zs_unit = device_unit(self);
204 1.1 eeh
205 1.20 eeh if (sa->sa_nintr == 0) {
206 1.65 tsutsui aprint_error(": no interrupt lines\n");
207 1.20 eeh return;
208 1.20 eeh }
209 1.1 eeh
210 1.33 eeh /* Use the mapping setup by the Sun PROM if possible. */
211 1.10 eeh if (zsaddr[zs_unit] == NULL) {
212 1.20 eeh /* Only map registers once. */
213 1.10 eeh if (sa->sa_npromvaddrs) {
214 1.10 eeh /*
215 1.10 eeh * We're converting from a 32-bit pointer to a 64-bit
216 1.10 eeh * pointer. Since the 32-bit entity is negative, but
217 1.10 eeh * the kernel is still mapped into the lower 4GB
218 1.10 eeh * range, this needs to be zero-extended.
219 1.10 eeh *
220 1.10 eeh * XXXXX If we map the kernel and devices into the
221 1.10 eeh * high 4GB range, this needs to be changed to
222 1.10 eeh * sign-extend the address.
223 1.10 eeh */
224 1.33 eeh sparc_promaddr_to_handle(sa->sa_bustag,
225 1.34 eeh sa->sa_promvaddrs[0], &bh);
226 1.33 eeh
227 1.10 eeh } else {
228 1.10 eeh
229 1.10 eeh if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
230 1.10 eeh sa->sa_offset,
231 1.10 eeh sa->sa_size,
232 1.10 eeh BUS_SPACE_MAP_LINEAR,
233 1.33 eeh &bh) != 0) {
234 1.65 tsutsui aprint_error(": cannot map registers\n");
235 1.10 eeh return;
236 1.10 eeh }
237 1.10 eeh }
238 1.65 tsutsui zsaddr[zs_unit] = bus_space_vaddr(sa->sa_bustag, bh);
239 1.10 eeh }
240 1.20 eeh zsc->zsc_bustag = sa->sa_bustag;
241 1.20 eeh zsc->zsc_dmatag = sa->sa_dmatag;
242 1.51 pk zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
243 1.20 eeh zsc->zsc_node = sa->sa_node;
244 1.20 eeh zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
245 1.1 eeh }
246 1.1 eeh
247 1.1 eeh /*
248 1.1 eeh * Attach a found zs.
249 1.1 eeh *
250 1.1 eeh * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
251 1.1 eeh * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
252 1.1 eeh */
253 1.1 eeh static void
254 1.57 cdi zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri)
255 1.1 eeh {
256 1.1 eeh struct zsc_attach_args zsc_args;
257 1.1 eeh struct zs_chanstate *cs;
258 1.68 mrg int channel;
259 1.20 eeh
260 1.20 eeh if (zsd == NULL) {
261 1.65 tsutsui aprint_error(": configuration incomplete\n");
262 1.20 eeh return;
263 1.20 eeh }
264 1.1 eeh
265 1.1 eeh /*
266 1.1 eeh * Initialize software state for each channel.
267 1.1 eeh */
268 1.1 eeh for (channel = 0; channel < 2; channel++) {
269 1.20 eeh struct zschan *zc;
270 1.26 eeh struct device *child;
271 1.20 eeh
272 1.1 eeh zsc_args.channel = channel;
273 1.1 eeh cs = &zsc->zsc_cs_store[channel];
274 1.1 eeh zsc->zsc_cs[channel] = cs;
275 1.1 eeh
276 1.63 ad zs_lock_init(cs);
277 1.1 eeh cs->cs_channel = channel;
278 1.1 eeh cs->cs_private = NULL;
279 1.1 eeh cs->cs_ops = &zsops_null;
280 1.1 eeh cs->cs_brg_clk = PCLK / 16;
281 1.1 eeh
282 1.20 eeh zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
283 1.20 eeh
284 1.26 eeh zsc_args.consdev = NULL;
285 1.20 eeh zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
286 1.20 eeh zsc->zsc_node,
287 1.20 eeh channel);
288 1.20 eeh
289 1.20 eeh if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
290 1.20 eeh zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
291 1.20 eeh zsc_args.consdev = &zs_consdev;
292 1.11 eeh }
293 1.20 eeh
294 1.20 eeh if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
295 1.20 eeh zs_conschan_get = zc;
296 1.20 eeh }
297 1.20 eeh if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
298 1.20 eeh zs_conschan_put = zc;
299 1.20 eeh }
300 1.20 eeh
301 1.31 eeh /* Children need to set cn_dev, etc */
302 1.1 eeh cs->cs_reg_csr = &zc->zc_csr;
303 1.1 eeh cs->cs_reg_data = &zc->zc_data;
304 1.1 eeh
305 1.49 martin memcpy(cs->cs_creg, zs_init_reg, 16);
306 1.49 martin memcpy(cs->cs_preg, zs_init_reg, 16);
307 1.1 eeh
308 1.20 eeh /* XXX: Consult PROM properties for this?! */
309 1.20 eeh cs->cs_defspeed = zs_get_speed(cs);
310 1.1 eeh cs->cs_defcflag = zs_def_cflag;
311 1.1 eeh
312 1.1 eeh /* Make these correspond to cs_defcflag (-crtscts) */
313 1.1 eeh cs->cs_rr0_dcd = ZSRR0_DCD;
314 1.1 eeh cs->cs_rr0_cts = 0;
315 1.1 eeh cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
316 1.1 eeh cs->cs_wr5_rts = 0;
317 1.1 eeh
318 1.1 eeh /*
319 1.1 eeh * Clear the master interrupt enable.
320 1.1 eeh * The INTENA is common to both channels,
321 1.1 eeh * so just do it on the A channel.
322 1.1 eeh */
323 1.1 eeh if (channel == 0) {
324 1.1 eeh zs_write_reg(cs, 9, 0);
325 1.1 eeh }
326 1.1 eeh
327 1.1 eeh /*
328 1.1 eeh * Look for a child driver for this channel.
329 1.1 eeh * The child attach will setup the hardware.
330 1.1 eeh */
331 1.65 tsutsui child = config_found(zsc->zsc_dev, (void *)&zsc_args,
332 1.55 macallan zs_print);
333 1.55 macallan if (child == NULL) {
334 1.1 eeh /* No sub-driver. Just reset it. */
335 1.65 tsutsui uint8_t reset = (channel == 0) ?
336 1.1 eeh ZSWR9_A_RESET : ZSWR9_B_RESET;
337 1.68 mrg zs_lock_chan(cs);
338 1.1 eeh zs_write_reg(cs, 9, reset);
339 1.68 mrg zs_unlock_chan(cs);
340 1.26 eeh }
341 1.26 eeh #if (NKBD > 0) || (NMS > 0)
342 1.26 eeh /*
343 1.26 eeh * If this was a zstty it has a keyboard
344 1.26 eeh * property on it we need to attach the
345 1.26 eeh * sunkbd and sunms line disciplines.
346 1.26 eeh */
347 1.26 eeh if (child
348 1.60 thorpej && (device_is_a(child, "zstty"))
349 1.51 pk && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
350 1.26 eeh struct kbd_ms_tty_attach_args kma;
351 1.26 eeh struct tty *tp;
352 1.26 eeh
353 1.55 macallan kma.kmta_tp = tp = zstty_get_tty_from_dev(child);
354 1.26 eeh kma.kmta_dev = tp->t_dev;
355 1.26 eeh kma.kmta_consdev = zsc_args.consdev;
356 1.26 eeh
357 1.26 eeh /* Attach 'em if we got 'em. */
358 1.26 eeh #if (NKBD > 0)
359 1.26 eeh if (channel == 0) {
360 1.26 eeh kma.kmta_name = "keyboard";
361 1.26 eeh config_found(child, (void *)&kma, NULL);
362 1.26 eeh }
363 1.26 eeh #endif
364 1.26 eeh #if (NMS > 0)
365 1.26 eeh if (channel == 1) {
366 1.26 eeh kma.kmta_name = "mouse";
367 1.26 eeh config_found(child, (void *)&kma, NULL);
368 1.26 eeh }
369 1.26 eeh #endif
370 1.1 eeh }
371 1.26 eeh #endif
372 1.1 eeh }
373 1.1 eeh
374 1.1 eeh /*
375 1.1 eeh * Now safe to install interrupt handlers. Note the arguments
376 1.1 eeh * to the interrupt handlers aren't used. Note, we only do this
377 1.1 eeh * once since both SCCs interrupt at the same level and vector.
378 1.1 eeh */
379 1.44 pk bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
380 1.64 ad if (!(zsc->zsc_softintr = softint_establish(SOFTINT_SERIAL, zssoft, zsc)))
381 1.40 provos panic("zsattach: could not establish soft interrupt");
382 1.1 eeh
383 1.21 cgd evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
384 1.65 tsutsui device_xname(zsc->zsc_dev), "intr");
385 1.1 eeh
386 1.24 eeh
387 1.1 eeh /*
388 1.1 eeh * Set the master interrupt enable and interrupt vector.
389 1.1 eeh * (common to both channels, do it on A)
390 1.1 eeh */
391 1.1 eeh cs = zsc->zsc_cs[0];
392 1.68 mrg zs_lock_chan(cs);
393 1.1 eeh /* interrupt vector */
394 1.1 eeh zs_write_reg(cs, 2, zs_init_reg[2]);
395 1.1 eeh /* master interrupt control (enable) */
396 1.1 eeh zs_write_reg(cs, 9, zs_init_reg[9]);
397 1.68 mrg zs_unlock_chan(cs);
398 1.1 eeh }
399 1.1 eeh
400 1.1 eeh static int
401 1.57 cdi zs_print(void *aux, const char *name)
402 1.1 eeh {
403 1.1 eeh struct zsc_attach_args *args = aux;
404 1.1 eeh
405 1.1 eeh if (name != NULL)
406 1.45 thorpej aprint_normal("%s: ", name);
407 1.1 eeh
408 1.1 eeh if (args->channel != -1)
409 1.45 thorpej aprint_normal(" channel %d", args->channel);
410 1.1 eeh
411 1.1 eeh return (UNCONF);
412 1.1 eeh }
413 1.1 eeh
414 1.1 eeh static int
415 1.57 cdi zshard(void *arg)
416 1.1 eeh {
417 1.65 tsutsui struct zsc_softc *zsc = arg;
418 1.24 eeh int rr3, rval;
419 1.24 eeh
420 1.24 eeh rval = 0;
421 1.24 eeh while ((rr3 = zsc_intr_hard(zsc))) {
422 1.24 eeh /* Count up the interrupts. */
423 1.24 eeh rval |= rr3;
424 1.24 eeh zsc->zsc_intrcnt.ev_count++;
425 1.24 eeh }
426 1.24 eeh if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
427 1.24 eeh (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
428 1.24 eeh zsc->zsc_softintr) {
429 1.64 ad softint_schedule(zsc->zsc_softintr);
430 1.24 eeh }
431 1.24 eeh return (rval);
432 1.24 eeh }
433 1.24 eeh
434 1.24 eeh int
435 1.57 cdi zscheckintr(void *arg)
436 1.24 eeh {
437 1.20 eeh struct zsc_softc *zsc;
438 1.24 eeh int unit, rval;
439 1.1 eeh
440 1.24 eeh rval = 0;
441 1.1 eeh for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
442 1.20 eeh
443 1.67 cegger zsc = device_lookup_private(&zs_cd, unit);
444 1.1 eeh if (zsc == NULL)
445 1.1 eeh continue;
446 1.24 eeh rval = (zshard((void *)zsc) || rval);
447 1.1 eeh }
448 1.1 eeh return (rval);
449 1.1 eeh }
450 1.1 eeh
451 1.24 eeh
452 1.1 eeh /*
453 1.24 eeh * We need this only for TTY_DEBUG purposes.
454 1.1 eeh */
455 1.28 fvdl static void
456 1.57 cdi zssoft(void *arg)
457 1.1 eeh {
458 1.65 tsutsui struct zsc_softc *zsc = arg;
459 1.1 eeh
460 1.68 mrg #if 0 /* not yet */
461 1.68 mrg /* Make sure we call the tty layer with tty_lock held. */
462 1.68 mrg mutex_spin_enter(&tty_lock);
463 1.68 mrg #endif
464 1.24 eeh (void)zsc_intr_soft(zsc);
465 1.13 eeh #ifdef TTY_DEBUG
466 1.24 eeh {
467 1.24 eeh struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
468 1.24 eeh struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
469 1.24 eeh if (zst0->zst_overflows || zst1->zst_overflows ) {
470 1.24 eeh struct trapframe *frame = (struct trapframe *)arg;
471 1.24 eeh
472 1.24 eeh printf("zs silo overflow from %p\n",
473 1.24 eeh (long)frame->tf_pc);
474 1.13 eeh }
475 1.24 eeh }
476 1.13 eeh #endif
477 1.68 mrg #if 0 /* not yet */
478 1.68 mrg mutex_spin_exit(&tty_lock);
479 1.68 mrg #endif
480 1.1 eeh }
481 1.1 eeh
482 1.1 eeh
483 1.1 eeh /*
484 1.1 eeh * Compute the current baud rate given a ZS channel.
485 1.1 eeh */
486 1.1 eeh static int
487 1.57 cdi zs_get_speed(struct zs_chanstate *cs)
488 1.1 eeh {
489 1.1 eeh int tconst;
490 1.1 eeh
491 1.1 eeh tconst = zs_read_reg(cs, 12);
492 1.1 eeh tconst |= zs_read_reg(cs, 13) << 8;
493 1.1 eeh return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
494 1.1 eeh }
495 1.1 eeh
496 1.1 eeh /*
497 1.1 eeh * MD functions for setting the baud rate and control modes.
498 1.1 eeh */
499 1.1 eeh int
500 1.58 cdi zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
501 1.1 eeh {
502 1.1 eeh int tconst, real_bps;
503 1.1 eeh
504 1.1 eeh if (bps == 0)
505 1.1 eeh return (0);
506 1.1 eeh
507 1.1 eeh #ifdef DIAGNOSTIC
508 1.1 eeh if (cs->cs_brg_clk == 0)
509 1.1 eeh panic("zs_set_speed");
510 1.1 eeh #endif
511 1.1 eeh
512 1.1 eeh tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
513 1.1 eeh if (tconst < 0)
514 1.1 eeh return (EINVAL);
515 1.1 eeh
516 1.1 eeh /* Convert back to make sure we can do it. */
517 1.1 eeh real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
518 1.1 eeh
519 1.1 eeh /* XXX - Allow some tolerance here? */
520 1.1 eeh if (real_bps != bps)
521 1.1 eeh return (EINVAL);
522 1.1 eeh
523 1.1 eeh cs->cs_preg[12] = tconst;
524 1.1 eeh cs->cs_preg[13] = tconst >> 8;
525 1.1 eeh
526 1.1 eeh /* Caller will stuff the pending registers. */
527 1.1 eeh return (0);
528 1.1 eeh }
529 1.1 eeh
530 1.1 eeh int
531 1.58 cdi zs_set_modes(struct zs_chanstate *cs, int cflag)
532 1.1 eeh {
533 1.1 eeh
534 1.1 eeh /*
535 1.1 eeh * Output hardware flow control on the chip is horrendous:
536 1.1 eeh * if carrier detect drops, the receiver is disabled, and if
537 1.1 eeh * CTS drops, the transmitter is stoped IN MID CHARACTER!
538 1.1 eeh * Therefore, NEVER set the HFC bit, and instead use the
539 1.1 eeh * status interrupt to detect CTS changes.
540 1.1 eeh */
541 1.68 mrg zs_lock_chan(cs);
542 1.9 wrstuden cs->cs_rr0_pps = 0;
543 1.9 wrstuden if ((cflag & (CLOCAL | MDMBUF)) != 0) {
544 1.1 eeh cs->cs_rr0_dcd = 0;
545 1.9 wrstuden if ((cflag & MDMBUF) == 0)
546 1.9 wrstuden cs->cs_rr0_pps = ZSRR0_DCD;
547 1.9 wrstuden } else
548 1.1 eeh cs->cs_rr0_dcd = ZSRR0_DCD;
549 1.1 eeh if ((cflag & CRTSCTS) != 0) {
550 1.1 eeh cs->cs_wr5_dtr = ZSWR5_DTR;
551 1.1 eeh cs->cs_wr5_rts = ZSWR5_RTS;
552 1.1 eeh cs->cs_rr0_cts = ZSRR0_CTS;
553 1.1 eeh } else if ((cflag & CDTRCTS) != 0) {
554 1.1 eeh cs->cs_wr5_dtr = 0;
555 1.1 eeh cs->cs_wr5_rts = ZSWR5_DTR;
556 1.1 eeh cs->cs_rr0_cts = ZSRR0_CTS;
557 1.1 eeh } else if ((cflag & MDMBUF) != 0) {
558 1.1 eeh cs->cs_wr5_dtr = 0;
559 1.1 eeh cs->cs_wr5_rts = ZSWR5_DTR;
560 1.1 eeh cs->cs_rr0_cts = ZSRR0_DCD;
561 1.1 eeh } else {
562 1.1 eeh cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
563 1.1 eeh cs->cs_wr5_rts = 0;
564 1.1 eeh cs->cs_rr0_cts = 0;
565 1.1 eeh }
566 1.68 mrg zs_unlock_chan(cs);
567 1.1 eeh
568 1.1 eeh /* Caller will stuff the pending registers. */
569 1.1 eeh return (0);
570 1.1 eeh }
571 1.1 eeh
572 1.1 eeh
573 1.1 eeh /*
574 1.1 eeh * Read or write the chip with suitable delays.
575 1.1 eeh */
576 1.1 eeh
577 1.1 eeh u_char
578 1.58 cdi zs_read_reg(struct zs_chanstate *cs, u_char reg)
579 1.1 eeh {
580 1.1 eeh u_char val;
581 1.1 eeh
582 1.1 eeh *cs->cs_reg_csr = reg;
583 1.1 eeh ZS_DELAY();
584 1.1 eeh val = *cs->cs_reg_csr;
585 1.1 eeh ZS_DELAY();
586 1.1 eeh return (val);
587 1.1 eeh }
588 1.1 eeh
589 1.1 eeh void
590 1.58 cdi zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
591 1.1 eeh {
592 1.1 eeh *cs->cs_reg_csr = reg;
593 1.1 eeh ZS_DELAY();
594 1.1 eeh *cs->cs_reg_csr = val;
595 1.1 eeh ZS_DELAY();
596 1.1 eeh }
597 1.1 eeh
598 1.1 eeh u_char
599 1.58 cdi zs_read_csr(struct zs_chanstate *cs)
600 1.1 eeh {
601 1.20 eeh u_char val;
602 1.1 eeh
603 1.1 eeh val = *cs->cs_reg_csr;
604 1.1 eeh ZS_DELAY();
605 1.1 eeh return (val);
606 1.1 eeh }
607 1.1 eeh
608 1.58 cdi void
609 1.58 cdi zs_write_csr(struct zs_chanstate *cs, u_char val)
610 1.1 eeh {
611 1.1 eeh *cs->cs_reg_csr = val;
612 1.1 eeh ZS_DELAY();
613 1.1 eeh }
614 1.1 eeh
615 1.58 cdi u_char
616 1.58 cdi zs_read_data(struct zs_chanstate *cs)
617 1.1 eeh {
618 1.20 eeh u_char val;
619 1.1 eeh
620 1.1 eeh val = *cs->cs_reg_data;
621 1.1 eeh ZS_DELAY();
622 1.1 eeh return (val);
623 1.1 eeh }
624 1.1 eeh
625 1.58 cdi void
626 1.58 cdi zs_write_data(struct zs_chanstate *cs, u_char val)
627 1.1 eeh {
628 1.1 eeh *cs->cs_reg_data = val;
629 1.1 eeh ZS_DELAY();
630 1.1 eeh }
631 1.1 eeh
632 1.1 eeh /****************************************************************
633 1.1 eeh * Console support functions (Sun specific!)
634 1.1 eeh * Note: this code is allowed to know about the layout of
635 1.1 eeh * the chip registers, and uses that to keep things simple.
636 1.1 eeh * XXX - I think I like the mvme167 code better. -gwr
637 1.1 eeh ****************************************************************/
638 1.1 eeh
639 1.57 cdi extern void Debugger(void);
640 1.1 eeh
641 1.1 eeh /*
642 1.1 eeh * Handle user request to enter kernel debugger.
643 1.1 eeh */
644 1.1 eeh void
645 1.58 cdi zs_abort(struct zs_chanstate *cs)
646 1.1 eeh {
647 1.20 eeh volatile struct zschan *zc = zs_conschan_get;
648 1.1 eeh int rr0;
649 1.1 eeh
650 1.1 eeh /* Wait for end of break to avoid PROM abort. */
651 1.1 eeh /* XXX - Limit the wait? */
652 1.1 eeh do {
653 1.1 eeh rr0 = zc->zc_csr;
654 1.1 eeh ZS_DELAY();
655 1.1 eeh } while (rr0 & ZSRR0_BREAK);
656 1.1 eeh
657 1.1 eeh #if defined(KGDB)
658 1.1 eeh zskgdb(cs);
659 1.1 eeh #elif defined(DDB)
660 1.12 eeh {
661 1.12 eeh extern int db_active;
662 1.12 eeh
663 1.12 eeh if (!db_active)
664 1.12 eeh Debugger();
665 1.12 eeh else
666 1.12 eeh /* Debugger is probably hozed */
667 1.12 eeh callrom();
668 1.12 eeh }
669 1.1 eeh #else
670 1.1 eeh printf("stopping on keyboard abort\n");
671 1.1 eeh callrom();
672 1.1 eeh #endif
673 1.1 eeh }
674 1.1 eeh
675 1.20 eeh
676 1.1 eeh /*
677 1.1 eeh * Polled input char.
678 1.1 eeh */
679 1.1 eeh int
680 1.58 cdi zs_getc(void *arg)
681 1.1 eeh {
682 1.20 eeh volatile struct zschan *zc = arg;
683 1.20 eeh int s, c, rr0;
684 1.1 eeh
685 1.1 eeh s = splhigh();
686 1.1 eeh /* Wait for a character to arrive. */
687 1.1 eeh do {
688 1.1 eeh rr0 = zc->zc_csr;
689 1.1 eeh ZS_DELAY();
690 1.1 eeh } while ((rr0 & ZSRR0_RX_READY) == 0);
691 1.1 eeh
692 1.1 eeh c = zc->zc_data;
693 1.1 eeh ZS_DELAY();
694 1.1 eeh splx(s);
695 1.1 eeh
696 1.1 eeh /*
697 1.1 eeh * This is used by the kd driver to read scan codes,
698 1.1 eeh * so don't translate '\r' ==> '\n' here...
699 1.1 eeh */
700 1.1 eeh return (c);
701 1.1 eeh }
702 1.1 eeh
703 1.1 eeh /*
704 1.1 eeh * Polled output char.
705 1.1 eeh */
706 1.1 eeh void
707 1.58 cdi zs_putc(void *arg, int c)
708 1.1 eeh {
709 1.20 eeh volatile struct zschan *zc = arg;
710 1.20 eeh int s, rr0;
711 1.1 eeh
712 1.1 eeh s = splhigh();
713 1.1 eeh
714 1.1 eeh /* Wait for transmitter to become ready. */
715 1.1 eeh do {
716 1.1 eeh rr0 = zc->zc_csr;
717 1.1 eeh ZS_DELAY();
718 1.1 eeh } while ((rr0 & ZSRR0_TX_READY) == 0);
719 1.1 eeh
720 1.1 eeh /*
721 1.1 eeh * Send the next character.
722 1.1 eeh * Now you'd think that this could be followed by a ZS_DELAY()
723 1.1 eeh * just like all the other chip accesses, but it turns out that
724 1.1 eeh * the `transmit-ready' interrupt isn't de-asserted until
725 1.1 eeh * some period of time after the register write completes
726 1.1 eeh * (more than a couple instructions). So to avoid stray
727 1.50 wiz * interrupts we put in the 2us delay regardless of CPU model.
728 1.1 eeh */
729 1.1 eeh zc->zc_data = c;
730 1.1 eeh delay(2);
731 1.1 eeh
732 1.1 eeh splx(s);
733 1.1 eeh }
734 1.1 eeh
735 1.1 eeh /*****************************************************************/
736 1.1 eeh
737 1.1 eeh
738 1.20 eeh
739 1.1 eeh
740 1.1 eeh /*
741 1.1 eeh * Polled console input putchar.
742 1.1 eeh */
743 1.1 eeh static int
744 1.57 cdi zscngetc(dev_t dev)
745 1.1 eeh {
746 1.20 eeh return (zs_getc(zs_conschan_get));
747 1.1 eeh }
748 1.1 eeh
749 1.1 eeh /*
750 1.1 eeh * Polled console output putchar.
751 1.1 eeh */
752 1.1 eeh static void
753 1.57 cdi zscnputc(dev_t dev, int c)
754 1.1 eeh {
755 1.20 eeh zs_putc(zs_conschan_put, c);
756 1.5 eeh }
757 1.5 eeh
758 1.5 eeh int swallow_zsintrs;
759 1.5 eeh
760 1.5 eeh static void
761 1.57 cdi zscnpollc(dev_t dev, int on)
762 1.5 eeh {
763 1.5 eeh /*
764 1.5 eeh * Need to tell zs driver to acknowledge all interrupts or we get
765 1.5 eeh * annoying spurious interrupt messages. This is because mucking
766 1.5 eeh * with spl() levels during polling does not prevent interrupts from
767 1.5 eeh * being generated.
768 1.5 eeh */
769 1.5 eeh
770 1.5 eeh if (on) swallow_zsintrs++;
771 1.5 eeh else swallow_zsintrs--;
772 1.1 eeh }
773 1.20 eeh
774 1.20 eeh int
775 1.57 cdi zs_console_flags(int promunit, int node, int channel)
776 1.20 eeh {
777 1.20 eeh int cookie, flags = 0;
778 1.20 eeh char buf[255];
779 1.20 eeh
780 1.20 eeh /*
781 1.53 pk * We'll just do the OBP grovelling down here since that's
782 1.20 eeh * the only type of firmware we support.
783 1.20 eeh */
784 1.20 eeh
785 1.20 eeh /* Default to channel 0 if there are no explicit prom args */
786 1.20 eeh cookie = 0;
787 1.54 pk if (node == prom_instance_to_package(prom_stdin())) {
788 1.61 martin if (prom_getoption("input-device", buf, sizeof buf) == 0 &&
789 1.53 pk strcmp("ttyb", buf) == 0)
790 1.53 pk cookie = 1;
791 1.20 eeh
792 1.20 eeh if (channel == cookie)
793 1.20 eeh flags |= ZS_HWFLAG_CONSOLE_INPUT;
794 1.20 eeh }
795 1.20 eeh
796 1.54 pk if (node == prom_instance_to_package(prom_stdout())) {
797 1.61 martin if (prom_getoption("output-device", buf, sizeof buf) == 0 &&
798 1.53 pk strcmp("ttyb", buf) == 0)
799 1.53 pk cookie = 1;
800 1.20 eeh
801 1.20 eeh if (channel == cookie)
802 1.20 eeh flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
803 1.20 eeh }
804 1.20 eeh
805 1.20 eeh return (flags);
806 1.20 eeh }
807 1.20 eeh
808