zs.c revision 1.75 1 1.75 tsutsui /* $NetBSD: zs.c,v 1.75 2015/10/30 16:21:46 tsutsui Exp $ */
2 1.1 eeh
3 1.1 eeh /*-
4 1.1 eeh * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 eeh * All rights reserved.
6 1.1 eeh *
7 1.1 eeh * This code is derived from software contributed to The NetBSD Foundation
8 1.1 eeh * by Gordon W. Ross.
9 1.1 eeh *
10 1.1 eeh * Redistribution and use in source and binary forms, with or without
11 1.1 eeh * modification, are permitted provided that the following conditions
12 1.1 eeh * are met:
13 1.1 eeh * 1. Redistributions of source code must retain the above copyright
14 1.1 eeh * notice, this list of conditions and the following disclaimer.
15 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 eeh * notice, this list of conditions and the following disclaimer in the
17 1.1 eeh * documentation and/or other materials provided with the distribution.
18 1.1 eeh *
19 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 eeh * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 eeh * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 eeh * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 eeh * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 eeh * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 eeh * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 eeh * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 eeh * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 eeh * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 eeh * POSSIBILITY OF SUCH DAMAGE.
30 1.1 eeh */
31 1.1 eeh
32 1.1 eeh /*
33 1.1 eeh * Zilog Z8530 Dual UART driver (machine-dependent part)
34 1.1 eeh *
35 1.1 eeh * Runs two serial lines per chip using slave drivers.
36 1.1 eeh * Plain tty/async lines use the zs_async slave.
37 1.1 eeh * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
38 1.1 eeh */
39 1.47 lukem
40 1.47 lukem #include <sys/cdefs.h>
41 1.75 tsutsui __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.75 2015/10/30 16:21:46 tsutsui Exp $");
42 1.2 jonathan
43 1.2 jonathan #include "opt_ddb.h"
44 1.29 lukem #include "opt_kgdb.h"
45 1.1 eeh
46 1.1 eeh #include <sys/param.h>
47 1.1 eeh #include <sys/systm.h>
48 1.1 eeh #include <sys/conf.h>
49 1.1 eeh #include <sys/device.h>
50 1.1 eeh #include <sys/file.h>
51 1.1 eeh #include <sys/ioctl.h>
52 1.1 eeh #include <sys/kernel.h>
53 1.1 eeh #include <sys/proc.h>
54 1.1 eeh #include <sys/tty.h>
55 1.1 eeh #include <sys/time.h>
56 1.1 eeh #include <sys/syslog.h>
57 1.64 ad #include <sys/intr.h>
58 1.1 eeh
59 1.1 eeh #include <machine/autoconf.h>
60 1.1 eeh #include <machine/openfirm.h>
61 1.1 eeh #include <machine/cpu.h>
62 1.1 eeh #include <machine/eeprom.h>
63 1.1 eeh #include <machine/psl.h>
64 1.1 eeh #include <machine/z8530var.h>
65 1.1 eeh
66 1.1 eeh #include <dev/cons.h>
67 1.1 eeh #include <dev/ic/z8530reg.h>
68 1.26 eeh #include <dev/sun/kbd_ms_ttyvar.h>
69 1.16 mrg #include <ddb/db_output.h>
70 1.1 eeh
71 1.70 nakayama #include <dev/sbus/sbusvar.h>
72 1.71 mrg #include <sparc64/dev/fhcvar.h>
73 1.1 eeh #include <sparc64/dev/cons.h>
74 1.1 eeh
75 1.65 tsutsui #include "ioconf.h"
76 1.1 eeh #include "kbd.h" /* NKBD */
77 1.26 eeh #include "ms.h" /* NMS */
78 1.1 eeh #include "zs.h" /* NZS */
79 1.1 eeh
80 1.1 eeh /* Make life easier for the initialized arrays here. */
81 1.1 eeh #if NZS < 3
82 1.1 eeh #undef NZS
83 1.1 eeh #define NZS 3
84 1.1 eeh #endif
85 1.1 eeh
86 1.1 eeh /*
87 1.1 eeh * Some warts needed by z8530tty.c -
88 1.1 eeh * The default parity REALLY needs to be the same as the PROM uses,
89 1.1 eeh * or you can not see messages done with printf during boot-up...
90 1.1 eeh */
91 1.1 eeh int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 1.1 eeh
93 1.1 eeh /*
94 1.1 eeh * The Sun provides a 4.9152 MHz clock to the ZS chips.
95 1.1 eeh */
96 1.1 eeh #define PCLK (9600 * 512) /* PCLK pin input clock rate */
97 1.1 eeh
98 1.10 eeh #define ZS_DELAY()
99 1.1 eeh
100 1.1 eeh /* The layout of this is hardware-dependent (padding, order). */
101 1.1 eeh struct zschan {
102 1.65 tsutsui volatile uint8_t zc_csr; /* ctrl,status, and indirect access */
103 1.65 tsutsui uint8_t zc_xxx0;
104 1.65 tsutsui volatile uint8_t zc_data; /* data */
105 1.65 tsutsui uint8_t zc_xxx1;
106 1.1 eeh };
107 1.1 eeh struct zsdevice {
108 1.1 eeh /* Yes, they are backwards. */
109 1.1 eeh struct zschan zs_chan_b;
110 1.1 eeh struct zschan zs_chan_a;
111 1.1 eeh };
112 1.1 eeh
113 1.20 eeh /* ZS channel used as the console device (if any) */
114 1.20 eeh void *zs_conschan_get, *zs_conschan_put;
115 1.20 eeh
116 1.1 eeh /* Saved PROM mappings */
117 1.1 eeh static struct zsdevice *zsaddr[NZS];
118 1.1 eeh
119 1.65 tsutsui static uint8_t zs_init_reg[16] = {
120 1.1 eeh 0, /* 0: CMD (reset, etc.) */
121 1.1 eeh 0, /* 1: No interrupts yet. */
122 1.1 eeh 0, /* 2: IVECT */
123 1.1 eeh ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
124 1.1 eeh ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
125 1.1 eeh ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
126 1.1 eeh 0, /* 6: TXSYNC/SYNCLO */
127 1.1 eeh 0, /* 7: RXSYNC/SYNCHI */
128 1.1 eeh 0, /* 8: alias for data port */
129 1.1 eeh ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
130 1.1 eeh 0, /*10: Misc. TX/RX control bits */
131 1.1 eeh ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
132 1.7 mycroft ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
133 1.7 mycroft 0, /*13: BAUDHI (default=9600) */
134 1.1 eeh ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
135 1.6 mycroft ZSWR15_BREAK_IE,
136 1.1 eeh };
137 1.1 eeh
138 1.20 eeh /* Console ops */
139 1.57 cdi static int zscngetc(dev_t);
140 1.57 cdi static void zscnputc(dev_t, int);
141 1.57 cdi static void zscnpollc(dev_t, int);
142 1.20 eeh
143 1.20 eeh struct consdev zs_consdev = {
144 1.62 martin .cn_getc = zscngetc,
145 1.62 martin .cn_putc = zscnputc,
146 1.62 martin .cn_pollc = zscnpollc,
147 1.20 eeh };
148 1.1 eeh
149 1.1 eeh
150 1.1 eeh /****************************************************************
151 1.1 eeh * Autoconfig
152 1.1 eeh ****************************************************************/
153 1.1 eeh
154 1.1 eeh /* Definition of the driver for autoconfig. */
155 1.65 tsutsui static int zs_match_sbus(device_t, cfdata_t, void *);
156 1.65 tsutsui static void zs_attach_sbus(device_t, device_t, void *);
157 1.1 eeh
158 1.71 mrg static int zs_match_fhc(device_t, cfdata_t, void *);
159 1.71 mrg static void zs_attach_fhc(device_t, device_t, void *);
160 1.71 mrg
161 1.57 cdi static void zs_attach(struct zsc_softc *, struct zsdevice *, int);
162 1.57 cdi static int zs_print(void *, const char *);
163 1.1 eeh
164 1.65 tsutsui CFATTACH_DECL_NEW(zs, sizeof(struct zsc_softc),
165 1.48 petrov zs_match_sbus, zs_attach_sbus, NULL, NULL);
166 1.1 eeh
167 1.71 mrg CFATTACH_DECL_NEW(zs_fhc, sizeof(struct zsc_softc),
168 1.71 mrg zs_match_fhc, zs_attach_fhc, NULL, NULL);
169 1.71 mrg
170 1.1 eeh /* Interrupt handlers. */
171 1.57 cdi int zscheckintr(void *);
172 1.57 cdi static int zshard(void *);
173 1.57 cdi static void zssoft(void *);
174 1.1 eeh
175 1.57 cdi static int zs_get_speed(struct zs_chanstate *);
176 1.1 eeh
177 1.20 eeh /* Console device support */
178 1.57 cdi static int zs_console_flags(int, int, int);
179 1.20 eeh
180 1.20 eeh /* Power management hooks */
181 1.57 cdi int zs_enable(struct zs_chanstate *);
182 1.57 cdi void zs_disable(struct zs_chanstate *);
183 1.1 eeh
184 1.55 macallan /* from dev/ic/z8530tty.c */
185 1.74 chs struct tty *zstty_get_tty_from_dev(device_t);
186 1.55 macallan
187 1.1 eeh /*
188 1.1 eeh * Is the zs chip present?
189 1.1 eeh */
190 1.1 eeh static int
191 1.65 tsutsui zs_match_sbus(device_t parent, cfdata_t cf, void *aux)
192 1.1 eeh {
193 1.1 eeh struct sbus_attach_args *sa = aux;
194 1.1 eeh
195 1.39 thorpej if (strcmp(cf->cf_name, sa->sa_name) != 0)
196 1.1 eeh return (0);
197 1.1 eeh
198 1.20 eeh return (1);
199 1.1 eeh }
200 1.1 eeh
201 1.71 mrg static int
202 1.71 mrg zs_match_fhc(device_t parent, cfdata_t cf, void *aux)
203 1.71 mrg {
204 1.71 mrg struct fhc_attach_args *fa = aux;
205 1.71 mrg
206 1.71 mrg if (strcmp(cf->cf_name, fa->fa_name) != 0)
207 1.71 mrg return (0);
208 1.71 mrg
209 1.71 mrg return (1);
210 1.71 mrg }
211 1.71 mrg
212 1.1 eeh static void
213 1.65 tsutsui zs_attach_sbus(device_t parent, device_t self, void *aux)
214 1.1 eeh {
215 1.65 tsutsui struct zsc_softc *zsc = device_private(self);
216 1.1 eeh struct sbus_attach_args *sa = aux;
217 1.33 eeh bus_space_handle_t bh;
218 1.65 tsutsui int zs_unit;
219 1.65 tsutsui
220 1.65 tsutsui zsc->zsc_dev = self;
221 1.65 tsutsui zs_unit = device_unit(self);
222 1.1 eeh
223 1.20 eeh if (sa->sa_nintr == 0) {
224 1.65 tsutsui aprint_error(": no interrupt lines\n");
225 1.20 eeh return;
226 1.20 eeh }
227 1.1 eeh
228 1.33 eeh /* Use the mapping setup by the Sun PROM if possible. */
229 1.10 eeh if (zsaddr[zs_unit] == NULL) {
230 1.20 eeh /* Only map registers once. */
231 1.10 eeh if (sa->sa_npromvaddrs) {
232 1.10 eeh /*
233 1.10 eeh * We're converting from a 32-bit pointer to a 64-bit
234 1.10 eeh * pointer. Since the 32-bit entity is negative, but
235 1.10 eeh * the kernel is still mapped into the lower 4GB
236 1.10 eeh * range, this needs to be zero-extended.
237 1.10 eeh *
238 1.10 eeh * XXXXX If we map the kernel and devices into the
239 1.10 eeh * high 4GB range, this needs to be changed to
240 1.10 eeh * sign-extend the address.
241 1.10 eeh */
242 1.33 eeh sparc_promaddr_to_handle(sa->sa_bustag,
243 1.34 eeh sa->sa_promvaddrs[0], &bh);
244 1.33 eeh
245 1.10 eeh } else {
246 1.10 eeh
247 1.10 eeh if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
248 1.10 eeh sa->sa_offset,
249 1.10 eeh sa->sa_size,
250 1.10 eeh BUS_SPACE_MAP_LINEAR,
251 1.33 eeh &bh) != 0) {
252 1.65 tsutsui aprint_error(": cannot map registers\n");
253 1.10 eeh return;
254 1.10 eeh }
255 1.10 eeh }
256 1.65 tsutsui zsaddr[zs_unit] = bus_space_vaddr(sa->sa_bustag, bh);
257 1.10 eeh }
258 1.20 eeh zsc->zsc_bustag = sa->sa_bustag;
259 1.20 eeh zsc->zsc_dmatag = sa->sa_dmatag;
260 1.51 pk zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
261 1.20 eeh zsc->zsc_node = sa->sa_node;
262 1.75 tsutsui aprint_normal("\n");
263 1.20 eeh zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
264 1.1 eeh }
265 1.1 eeh
266 1.71 mrg static void
267 1.71 mrg zs_attach_fhc(device_t parent, device_t self, void *aux)
268 1.71 mrg {
269 1.71 mrg struct zsc_softc *zsc = device_private(self);
270 1.71 mrg struct fhc_attach_args *fa = aux;
271 1.71 mrg bus_space_handle_t bh;
272 1.71 mrg int zs_unit;
273 1.71 mrg
274 1.71 mrg zsc->zsc_dev = self;
275 1.71 mrg zs_unit = device_unit(self);
276 1.71 mrg
277 1.71 mrg if (fa->fa_nreg < 1 && fa->fa_npromvaddrs < 1) {
278 1.71 mrg printf(": no registers\n");
279 1.71 mrg return;
280 1.71 mrg }
281 1.71 mrg
282 1.71 mrg if (fa->fa_nintr == 0) {
283 1.71 mrg aprint_error(": no interrupt lines\n");
284 1.71 mrg return;
285 1.71 mrg }
286 1.71 mrg
287 1.71 mrg /* Use the mapping setup by the Sun PROM if possible. */
288 1.71 mrg if (zsaddr[zs_unit] == NULL) {
289 1.71 mrg /* Only map registers once. */
290 1.71 mrg if (fa->fa_npromvaddrs) {
291 1.71 mrg /*
292 1.71 mrg * We're converting from a 32-bit pointer to a 64-bit
293 1.71 mrg * pointer. Since the 32-bit entity is negative, but
294 1.71 mrg * the kernel is still mapped into the lower 4GB
295 1.71 mrg * range, this needs to be zero-extended.
296 1.71 mrg *
297 1.71 mrg * XXXXX If we map the kernel and devices into the
298 1.71 mrg * high 4GB range, this needs to be changed to
299 1.71 mrg * sign-extend the address.
300 1.71 mrg */
301 1.71 mrg sparc_promaddr_to_handle(fa->fa_bustag,
302 1.71 mrg fa->fa_promvaddrs[0], &bh);
303 1.71 mrg
304 1.71 mrg } else {
305 1.71 mrg
306 1.71 mrg if (fhc_bus_map(fa->fa_bustag,
307 1.71 mrg fa->fa_reg[0].fbr_slot,
308 1.71 mrg fa->fa_reg[0].fbr_offset,
309 1.71 mrg fa->fa_reg[0].fbr_size,
310 1.71 mrg BUS_SPACE_MAP_LINEAR,
311 1.71 mrg &bh) != 0) {
312 1.71 mrg aprint_error(": cannot map registers\n");
313 1.71 mrg return;
314 1.71 mrg }
315 1.71 mrg }
316 1.71 mrg zsaddr[zs_unit] = bus_space_vaddr(fa->fa_bustag, bh);
317 1.71 mrg }
318 1.71 mrg zsc->zsc_bustag = fa->fa_bustag;
319 1.71 mrg zsc->zsc_dmatag = NULL;
320 1.71 mrg zsc->zsc_promunit = prom_getpropint(fa->fa_node, "slave", -2);
321 1.71 mrg zsc->zsc_node = fa->fa_node;
322 1.73 jdc aprint_normal("\n");
323 1.71 mrg zs_attach(zsc, zsaddr[zs_unit], fa->fa_intr[0]);
324 1.71 mrg }
325 1.71 mrg
326 1.1 eeh /*
327 1.1 eeh * Attach a found zs.
328 1.1 eeh *
329 1.1 eeh * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
330 1.1 eeh * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
331 1.1 eeh */
332 1.1 eeh static void
333 1.57 cdi zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri)
334 1.1 eeh {
335 1.1 eeh struct zsc_attach_args zsc_args;
336 1.1 eeh struct zs_chanstate *cs;
337 1.68 mrg int channel;
338 1.20 eeh
339 1.20 eeh if (zsd == NULL) {
340 1.65 tsutsui aprint_error(": configuration incomplete\n");
341 1.20 eeh return;
342 1.20 eeh }
343 1.1 eeh
344 1.1 eeh /*
345 1.1 eeh * Initialize software state for each channel.
346 1.1 eeh */
347 1.1 eeh for (channel = 0; channel < 2; channel++) {
348 1.20 eeh struct zschan *zc;
349 1.74 chs device_t child;
350 1.20 eeh
351 1.1 eeh zsc_args.channel = channel;
352 1.1 eeh cs = &zsc->zsc_cs_store[channel];
353 1.1 eeh zsc->zsc_cs[channel] = cs;
354 1.1 eeh
355 1.63 ad zs_lock_init(cs);
356 1.1 eeh cs->cs_channel = channel;
357 1.1 eeh cs->cs_private = NULL;
358 1.1 eeh cs->cs_ops = &zsops_null;
359 1.1 eeh cs->cs_brg_clk = PCLK / 16;
360 1.1 eeh
361 1.20 eeh zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
362 1.20 eeh
363 1.26 eeh zsc_args.consdev = NULL;
364 1.20 eeh zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
365 1.20 eeh zsc->zsc_node,
366 1.20 eeh channel);
367 1.20 eeh
368 1.20 eeh if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
369 1.20 eeh zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
370 1.20 eeh zsc_args.consdev = &zs_consdev;
371 1.11 eeh }
372 1.20 eeh
373 1.20 eeh if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
374 1.20 eeh zs_conschan_get = zc;
375 1.20 eeh }
376 1.20 eeh if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
377 1.20 eeh zs_conschan_put = zc;
378 1.20 eeh }
379 1.20 eeh
380 1.31 eeh /* Children need to set cn_dev, etc */
381 1.1 eeh cs->cs_reg_csr = &zc->zc_csr;
382 1.1 eeh cs->cs_reg_data = &zc->zc_data;
383 1.1 eeh
384 1.49 martin memcpy(cs->cs_creg, zs_init_reg, 16);
385 1.49 martin memcpy(cs->cs_preg, zs_init_reg, 16);
386 1.1 eeh
387 1.20 eeh /* XXX: Consult PROM properties for this?! */
388 1.20 eeh cs->cs_defspeed = zs_get_speed(cs);
389 1.1 eeh cs->cs_defcflag = zs_def_cflag;
390 1.1 eeh
391 1.1 eeh /* Make these correspond to cs_defcflag (-crtscts) */
392 1.1 eeh cs->cs_rr0_dcd = ZSRR0_DCD;
393 1.1 eeh cs->cs_rr0_cts = 0;
394 1.1 eeh cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
395 1.1 eeh cs->cs_wr5_rts = 0;
396 1.1 eeh
397 1.1 eeh /*
398 1.1 eeh * Clear the master interrupt enable.
399 1.1 eeh * The INTENA is common to both channels,
400 1.1 eeh * so just do it on the A channel.
401 1.1 eeh */
402 1.1 eeh if (channel == 0) {
403 1.1 eeh zs_write_reg(cs, 9, 0);
404 1.1 eeh }
405 1.1 eeh
406 1.1 eeh /*
407 1.1 eeh * Look for a child driver for this channel.
408 1.1 eeh * The child attach will setup the hardware.
409 1.1 eeh */
410 1.65 tsutsui child = config_found(zsc->zsc_dev, (void *)&zsc_args,
411 1.55 macallan zs_print);
412 1.55 macallan if (child == NULL) {
413 1.1 eeh /* No sub-driver. Just reset it. */
414 1.65 tsutsui uint8_t reset = (channel == 0) ?
415 1.1 eeh ZSWR9_A_RESET : ZSWR9_B_RESET;
416 1.68 mrg zs_lock_chan(cs);
417 1.1 eeh zs_write_reg(cs, 9, reset);
418 1.68 mrg zs_unlock_chan(cs);
419 1.26 eeh }
420 1.26 eeh #if (NKBD > 0) || (NMS > 0)
421 1.26 eeh /*
422 1.26 eeh * If this was a zstty it has a keyboard
423 1.26 eeh * property on it we need to attach the
424 1.26 eeh * sunkbd and sunms line disciplines.
425 1.26 eeh */
426 1.26 eeh if (child
427 1.60 thorpej && (device_is_a(child, "zstty"))
428 1.51 pk && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
429 1.26 eeh struct kbd_ms_tty_attach_args kma;
430 1.26 eeh struct tty *tp;
431 1.26 eeh
432 1.55 macallan kma.kmta_tp = tp = zstty_get_tty_from_dev(child);
433 1.26 eeh kma.kmta_dev = tp->t_dev;
434 1.26 eeh kma.kmta_consdev = zsc_args.consdev;
435 1.26 eeh
436 1.26 eeh /* Attach 'em if we got 'em. */
437 1.26 eeh #if (NKBD > 0)
438 1.26 eeh if (channel == 0) {
439 1.26 eeh kma.kmta_name = "keyboard";
440 1.26 eeh config_found(child, (void *)&kma, NULL);
441 1.26 eeh }
442 1.26 eeh #endif
443 1.26 eeh #if (NMS > 0)
444 1.26 eeh if (channel == 1) {
445 1.26 eeh kma.kmta_name = "mouse";
446 1.26 eeh config_found(child, (void *)&kma, NULL);
447 1.26 eeh }
448 1.26 eeh #endif
449 1.1 eeh }
450 1.26 eeh #endif
451 1.1 eeh }
452 1.1 eeh
453 1.1 eeh /*
454 1.1 eeh * Now safe to install interrupt handlers. Note the arguments
455 1.1 eeh * to the interrupt handlers aren't used. Note, we only do this
456 1.1 eeh * once since both SCCs interrupt at the same level and vector.
457 1.1 eeh */
458 1.44 pk bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
459 1.64 ad if (!(zsc->zsc_softintr = softint_establish(SOFTINT_SERIAL, zssoft, zsc)))
460 1.40 provos panic("zsattach: could not establish soft interrupt");
461 1.1 eeh
462 1.21 cgd evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
463 1.65 tsutsui device_xname(zsc->zsc_dev), "intr");
464 1.1 eeh
465 1.24 eeh
466 1.1 eeh /*
467 1.1 eeh * Set the master interrupt enable and interrupt vector.
468 1.1 eeh * (common to both channels, do it on A)
469 1.1 eeh */
470 1.1 eeh cs = zsc->zsc_cs[0];
471 1.68 mrg zs_lock_chan(cs);
472 1.1 eeh /* interrupt vector */
473 1.1 eeh zs_write_reg(cs, 2, zs_init_reg[2]);
474 1.1 eeh /* master interrupt control (enable) */
475 1.1 eeh zs_write_reg(cs, 9, zs_init_reg[9]);
476 1.68 mrg zs_unlock_chan(cs);
477 1.1 eeh }
478 1.1 eeh
479 1.1 eeh static int
480 1.57 cdi zs_print(void *aux, const char *name)
481 1.1 eeh {
482 1.1 eeh struct zsc_attach_args *args = aux;
483 1.1 eeh
484 1.1 eeh if (name != NULL)
485 1.45 thorpej aprint_normal("%s: ", name);
486 1.1 eeh
487 1.1 eeh if (args->channel != -1)
488 1.45 thorpej aprint_normal(" channel %d", args->channel);
489 1.1 eeh
490 1.1 eeh return (UNCONF);
491 1.1 eeh }
492 1.1 eeh
493 1.1 eeh static int
494 1.57 cdi zshard(void *arg)
495 1.1 eeh {
496 1.65 tsutsui struct zsc_softc *zsc = arg;
497 1.24 eeh int rr3, rval;
498 1.24 eeh
499 1.24 eeh rval = 0;
500 1.24 eeh while ((rr3 = zsc_intr_hard(zsc))) {
501 1.24 eeh /* Count up the interrupts. */
502 1.24 eeh rval |= rr3;
503 1.24 eeh zsc->zsc_intrcnt.ev_count++;
504 1.24 eeh }
505 1.24 eeh if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
506 1.24 eeh (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
507 1.24 eeh zsc->zsc_softintr) {
508 1.64 ad softint_schedule(zsc->zsc_softintr);
509 1.24 eeh }
510 1.24 eeh return (rval);
511 1.24 eeh }
512 1.24 eeh
513 1.24 eeh int
514 1.57 cdi zscheckintr(void *arg)
515 1.24 eeh {
516 1.20 eeh struct zsc_softc *zsc;
517 1.24 eeh int unit, rval;
518 1.1 eeh
519 1.24 eeh rval = 0;
520 1.1 eeh for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
521 1.20 eeh
522 1.67 cegger zsc = device_lookup_private(&zs_cd, unit);
523 1.1 eeh if (zsc == NULL)
524 1.1 eeh continue;
525 1.24 eeh rval = (zshard((void *)zsc) || rval);
526 1.1 eeh }
527 1.1 eeh return (rval);
528 1.1 eeh }
529 1.1 eeh
530 1.24 eeh
531 1.1 eeh /*
532 1.24 eeh * We need this only for TTY_DEBUG purposes.
533 1.1 eeh */
534 1.28 fvdl static void
535 1.57 cdi zssoft(void *arg)
536 1.1 eeh {
537 1.65 tsutsui struct zsc_softc *zsc = arg;
538 1.1 eeh
539 1.68 mrg #if 0 /* not yet */
540 1.68 mrg /* Make sure we call the tty layer with tty_lock held. */
541 1.68 mrg mutex_spin_enter(&tty_lock);
542 1.68 mrg #endif
543 1.24 eeh (void)zsc_intr_soft(zsc);
544 1.13 eeh #ifdef TTY_DEBUG
545 1.24 eeh {
546 1.24 eeh struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
547 1.24 eeh struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
548 1.24 eeh if (zst0->zst_overflows || zst1->zst_overflows ) {
549 1.24 eeh struct trapframe *frame = (struct trapframe *)arg;
550 1.24 eeh
551 1.24 eeh printf("zs silo overflow from %p\n",
552 1.24 eeh (long)frame->tf_pc);
553 1.13 eeh }
554 1.24 eeh }
555 1.13 eeh #endif
556 1.68 mrg #if 0 /* not yet */
557 1.68 mrg mutex_spin_exit(&tty_lock);
558 1.68 mrg #endif
559 1.1 eeh }
560 1.1 eeh
561 1.1 eeh
562 1.1 eeh /*
563 1.1 eeh * Compute the current baud rate given a ZS channel.
564 1.1 eeh */
565 1.1 eeh static int
566 1.57 cdi zs_get_speed(struct zs_chanstate *cs)
567 1.1 eeh {
568 1.1 eeh int tconst;
569 1.1 eeh
570 1.1 eeh tconst = zs_read_reg(cs, 12);
571 1.1 eeh tconst |= zs_read_reg(cs, 13) << 8;
572 1.1 eeh return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
573 1.1 eeh }
574 1.1 eeh
575 1.1 eeh /*
576 1.1 eeh * MD functions for setting the baud rate and control modes.
577 1.1 eeh */
578 1.1 eeh int
579 1.58 cdi zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
580 1.1 eeh {
581 1.1 eeh int tconst, real_bps;
582 1.1 eeh
583 1.1 eeh if (bps == 0)
584 1.1 eeh return (0);
585 1.1 eeh
586 1.1 eeh #ifdef DIAGNOSTIC
587 1.1 eeh if (cs->cs_brg_clk == 0)
588 1.1 eeh panic("zs_set_speed");
589 1.1 eeh #endif
590 1.1 eeh
591 1.1 eeh tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
592 1.1 eeh if (tconst < 0)
593 1.1 eeh return (EINVAL);
594 1.1 eeh
595 1.1 eeh /* Convert back to make sure we can do it. */
596 1.1 eeh real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
597 1.1 eeh
598 1.1 eeh /* XXX - Allow some tolerance here? */
599 1.1 eeh if (real_bps != bps)
600 1.1 eeh return (EINVAL);
601 1.1 eeh
602 1.1 eeh cs->cs_preg[12] = tconst;
603 1.1 eeh cs->cs_preg[13] = tconst >> 8;
604 1.1 eeh
605 1.1 eeh /* Caller will stuff the pending registers. */
606 1.1 eeh return (0);
607 1.1 eeh }
608 1.1 eeh
609 1.1 eeh int
610 1.58 cdi zs_set_modes(struct zs_chanstate *cs, int cflag)
611 1.1 eeh {
612 1.1 eeh
613 1.1 eeh /*
614 1.1 eeh * Output hardware flow control on the chip is horrendous:
615 1.1 eeh * if carrier detect drops, the receiver is disabled, and if
616 1.1 eeh * CTS drops, the transmitter is stoped IN MID CHARACTER!
617 1.1 eeh * Therefore, NEVER set the HFC bit, and instead use the
618 1.1 eeh * status interrupt to detect CTS changes.
619 1.1 eeh */
620 1.68 mrg zs_lock_chan(cs);
621 1.9 wrstuden cs->cs_rr0_pps = 0;
622 1.9 wrstuden if ((cflag & (CLOCAL | MDMBUF)) != 0) {
623 1.1 eeh cs->cs_rr0_dcd = 0;
624 1.9 wrstuden if ((cflag & MDMBUF) == 0)
625 1.9 wrstuden cs->cs_rr0_pps = ZSRR0_DCD;
626 1.9 wrstuden } else
627 1.1 eeh cs->cs_rr0_dcd = ZSRR0_DCD;
628 1.1 eeh if ((cflag & CRTSCTS) != 0) {
629 1.1 eeh cs->cs_wr5_dtr = ZSWR5_DTR;
630 1.1 eeh cs->cs_wr5_rts = ZSWR5_RTS;
631 1.1 eeh cs->cs_rr0_cts = ZSRR0_CTS;
632 1.1 eeh } else if ((cflag & CDTRCTS) != 0) {
633 1.1 eeh cs->cs_wr5_dtr = 0;
634 1.1 eeh cs->cs_wr5_rts = ZSWR5_DTR;
635 1.1 eeh cs->cs_rr0_cts = ZSRR0_CTS;
636 1.1 eeh } else if ((cflag & MDMBUF) != 0) {
637 1.1 eeh cs->cs_wr5_dtr = 0;
638 1.1 eeh cs->cs_wr5_rts = ZSWR5_DTR;
639 1.1 eeh cs->cs_rr0_cts = ZSRR0_DCD;
640 1.1 eeh } else {
641 1.1 eeh cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
642 1.1 eeh cs->cs_wr5_rts = 0;
643 1.1 eeh cs->cs_rr0_cts = 0;
644 1.1 eeh }
645 1.68 mrg zs_unlock_chan(cs);
646 1.1 eeh
647 1.1 eeh /* Caller will stuff the pending registers. */
648 1.1 eeh return (0);
649 1.1 eeh }
650 1.1 eeh
651 1.1 eeh
652 1.1 eeh /*
653 1.1 eeh * Read or write the chip with suitable delays.
654 1.1 eeh */
655 1.1 eeh
656 1.1 eeh u_char
657 1.58 cdi zs_read_reg(struct zs_chanstate *cs, u_char reg)
658 1.1 eeh {
659 1.1 eeh u_char val;
660 1.1 eeh
661 1.1 eeh *cs->cs_reg_csr = reg;
662 1.1 eeh ZS_DELAY();
663 1.1 eeh val = *cs->cs_reg_csr;
664 1.1 eeh ZS_DELAY();
665 1.1 eeh return (val);
666 1.1 eeh }
667 1.1 eeh
668 1.1 eeh void
669 1.58 cdi zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
670 1.1 eeh {
671 1.1 eeh *cs->cs_reg_csr = reg;
672 1.1 eeh ZS_DELAY();
673 1.1 eeh *cs->cs_reg_csr = val;
674 1.1 eeh ZS_DELAY();
675 1.1 eeh }
676 1.1 eeh
677 1.1 eeh u_char
678 1.58 cdi zs_read_csr(struct zs_chanstate *cs)
679 1.1 eeh {
680 1.20 eeh u_char val;
681 1.1 eeh
682 1.1 eeh val = *cs->cs_reg_csr;
683 1.1 eeh ZS_DELAY();
684 1.1 eeh return (val);
685 1.1 eeh }
686 1.1 eeh
687 1.58 cdi void
688 1.58 cdi zs_write_csr(struct zs_chanstate *cs, u_char val)
689 1.1 eeh {
690 1.1 eeh *cs->cs_reg_csr = val;
691 1.1 eeh ZS_DELAY();
692 1.1 eeh }
693 1.1 eeh
694 1.58 cdi u_char
695 1.58 cdi zs_read_data(struct zs_chanstate *cs)
696 1.1 eeh {
697 1.20 eeh u_char val;
698 1.1 eeh
699 1.1 eeh val = *cs->cs_reg_data;
700 1.1 eeh ZS_DELAY();
701 1.1 eeh return (val);
702 1.1 eeh }
703 1.1 eeh
704 1.58 cdi void
705 1.58 cdi zs_write_data(struct zs_chanstate *cs, u_char val)
706 1.1 eeh {
707 1.1 eeh *cs->cs_reg_data = val;
708 1.1 eeh ZS_DELAY();
709 1.1 eeh }
710 1.1 eeh
711 1.1 eeh /****************************************************************
712 1.1 eeh * Console support functions (Sun specific!)
713 1.1 eeh * Note: this code is allowed to know about the layout of
714 1.1 eeh * the chip registers, and uses that to keep things simple.
715 1.1 eeh * XXX - I think I like the mvme167 code better. -gwr
716 1.1 eeh ****************************************************************/
717 1.1 eeh
718 1.57 cdi extern void Debugger(void);
719 1.1 eeh
720 1.1 eeh /*
721 1.1 eeh * Handle user request to enter kernel debugger.
722 1.1 eeh */
723 1.1 eeh void
724 1.58 cdi zs_abort(struct zs_chanstate *cs)
725 1.1 eeh {
726 1.20 eeh volatile struct zschan *zc = zs_conschan_get;
727 1.1 eeh int rr0;
728 1.1 eeh
729 1.1 eeh /* Wait for end of break to avoid PROM abort. */
730 1.1 eeh /* XXX - Limit the wait? */
731 1.1 eeh do {
732 1.1 eeh rr0 = zc->zc_csr;
733 1.1 eeh ZS_DELAY();
734 1.1 eeh } while (rr0 & ZSRR0_BREAK);
735 1.1 eeh
736 1.1 eeh #if defined(KGDB)
737 1.1 eeh zskgdb(cs);
738 1.1 eeh #elif defined(DDB)
739 1.12 eeh {
740 1.12 eeh extern int db_active;
741 1.12 eeh
742 1.12 eeh if (!db_active)
743 1.12 eeh Debugger();
744 1.12 eeh else
745 1.12 eeh /* Debugger is probably hozed */
746 1.12 eeh callrom();
747 1.12 eeh }
748 1.1 eeh #else
749 1.1 eeh printf("stopping on keyboard abort\n");
750 1.1 eeh callrom();
751 1.1 eeh #endif
752 1.1 eeh }
753 1.1 eeh
754 1.20 eeh
755 1.1 eeh /*
756 1.1 eeh * Polled input char.
757 1.1 eeh */
758 1.1 eeh int
759 1.58 cdi zs_getc(void *arg)
760 1.1 eeh {
761 1.20 eeh volatile struct zschan *zc = arg;
762 1.20 eeh int s, c, rr0;
763 1.1 eeh
764 1.1 eeh s = splhigh();
765 1.1 eeh /* Wait for a character to arrive. */
766 1.1 eeh do {
767 1.1 eeh rr0 = zc->zc_csr;
768 1.1 eeh ZS_DELAY();
769 1.1 eeh } while ((rr0 & ZSRR0_RX_READY) == 0);
770 1.1 eeh
771 1.1 eeh c = zc->zc_data;
772 1.1 eeh ZS_DELAY();
773 1.1 eeh splx(s);
774 1.1 eeh
775 1.1 eeh /*
776 1.1 eeh * This is used by the kd driver to read scan codes,
777 1.1 eeh * so don't translate '\r' ==> '\n' here...
778 1.1 eeh */
779 1.1 eeh return (c);
780 1.1 eeh }
781 1.1 eeh
782 1.1 eeh /*
783 1.1 eeh * Polled output char.
784 1.1 eeh */
785 1.1 eeh void
786 1.58 cdi zs_putc(void *arg, int c)
787 1.1 eeh {
788 1.20 eeh volatile struct zschan *zc = arg;
789 1.20 eeh int s, rr0;
790 1.1 eeh
791 1.1 eeh s = splhigh();
792 1.1 eeh
793 1.1 eeh /* Wait for transmitter to become ready. */
794 1.1 eeh do {
795 1.1 eeh rr0 = zc->zc_csr;
796 1.1 eeh ZS_DELAY();
797 1.1 eeh } while ((rr0 & ZSRR0_TX_READY) == 0);
798 1.1 eeh
799 1.1 eeh /*
800 1.1 eeh * Send the next character.
801 1.1 eeh * Now you'd think that this could be followed by a ZS_DELAY()
802 1.1 eeh * just like all the other chip accesses, but it turns out that
803 1.1 eeh * the `transmit-ready' interrupt isn't de-asserted until
804 1.1 eeh * some period of time after the register write completes
805 1.1 eeh * (more than a couple instructions). So to avoid stray
806 1.50 wiz * interrupts we put in the 2us delay regardless of CPU model.
807 1.1 eeh */
808 1.1 eeh zc->zc_data = c;
809 1.1 eeh delay(2);
810 1.1 eeh
811 1.1 eeh splx(s);
812 1.1 eeh }
813 1.1 eeh
814 1.1 eeh /*****************************************************************/
815 1.1 eeh
816 1.1 eeh
817 1.20 eeh
818 1.1 eeh
819 1.1 eeh /*
820 1.1 eeh * Polled console input putchar.
821 1.1 eeh */
822 1.1 eeh static int
823 1.57 cdi zscngetc(dev_t dev)
824 1.1 eeh {
825 1.20 eeh return (zs_getc(zs_conschan_get));
826 1.1 eeh }
827 1.1 eeh
828 1.1 eeh /*
829 1.1 eeh * Polled console output putchar.
830 1.1 eeh */
831 1.1 eeh static void
832 1.57 cdi zscnputc(dev_t dev, int c)
833 1.1 eeh {
834 1.20 eeh zs_putc(zs_conschan_put, c);
835 1.5 eeh }
836 1.5 eeh
837 1.5 eeh int swallow_zsintrs;
838 1.5 eeh
839 1.5 eeh static void
840 1.57 cdi zscnpollc(dev_t dev, int on)
841 1.5 eeh {
842 1.5 eeh /*
843 1.5 eeh * Need to tell zs driver to acknowledge all interrupts or we get
844 1.5 eeh * annoying spurious interrupt messages. This is because mucking
845 1.5 eeh * with spl() levels during polling does not prevent interrupts from
846 1.5 eeh * being generated.
847 1.5 eeh */
848 1.5 eeh
849 1.5 eeh if (on) swallow_zsintrs++;
850 1.5 eeh else swallow_zsintrs--;
851 1.1 eeh }
852 1.20 eeh
853 1.20 eeh int
854 1.57 cdi zs_console_flags(int promunit, int node, int channel)
855 1.20 eeh {
856 1.20 eeh int cookie, flags = 0;
857 1.20 eeh char buf[255];
858 1.20 eeh
859 1.20 eeh /*
860 1.53 pk * We'll just do the OBP grovelling down here since that's
861 1.20 eeh * the only type of firmware we support.
862 1.20 eeh */
863 1.20 eeh
864 1.20 eeh /* Default to channel 0 if there are no explicit prom args */
865 1.20 eeh cookie = 0;
866 1.54 pk if (node == prom_instance_to_package(prom_stdin())) {
867 1.61 martin if (prom_getoption("input-device", buf, sizeof buf) == 0 &&
868 1.53 pk strcmp("ttyb", buf) == 0)
869 1.53 pk cookie = 1;
870 1.20 eeh
871 1.20 eeh if (channel == cookie)
872 1.20 eeh flags |= ZS_HWFLAG_CONSOLE_INPUT;
873 1.20 eeh }
874 1.20 eeh
875 1.54 pk if (node == prom_instance_to_package(prom_stdout())) {
876 1.61 martin if (prom_getoption("output-device", buf, sizeof buf) == 0 &&
877 1.53 pk strcmp("ttyb", buf) == 0)
878 1.53 pk cookie = 1;
879 1.20 eeh
880 1.20 eeh if (channel == cookie)
881 1.20 eeh flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
882 1.20 eeh }
883 1.20 eeh
884 1.20 eeh return (flags);
885 1.20 eeh }
886 1.20 eeh
887