zs.c revision 1.15 1 /* $NetBSD: zs.c,v 1.15 2000/03/16 02:36:57 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/openfirm.h>
63 #include <machine/bsd_openprom.h>
64 #include <machine/conf.h>
65 #include <machine/cpu.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include <sparc64/sparc64/vaddrs.h>
74 #include <sparc64/sparc64/auxreg.h>
75 #include <sparc64/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 #define ZS_DELAY()
100
101 /* The layout of this is hardware-dependent (padding, order). */
102 struct zschan {
103 volatile u_char zc_csr; /* ctrl,status, and indirect access */
104 u_char zc_xxx0;
105 volatile u_char zc_data; /* data */
106 u_char zc_xxx1;
107 };
108 struct zsdevice {
109 /* Yes, they are backwards. */
110 struct zschan zs_chan_b;
111 struct zschan zs_chan_a;
112 };
113
114 /* Saved PROM mappings */
115 static struct zsdevice *zsaddr[NZS];
116
117 /* Flags from cninit() */
118 static int zs_hwflags[NZS][2];
119
120 /* Default speed for each channel */
121 static int zs_defspeed[NZS][2] = {
122 { 9600, /* ttya */
123 9600 }, /* ttyb */
124 { 1200, /* keyboard */
125 1200 }, /* mouse */
126 { 9600, /* ttyc */
127 9600 }, /* ttyd */
128 };
129
130 static u_char zs_init_reg[16] = {
131 0, /* 0: CMD (reset, etc.) */
132 0, /* 1: No interrupts yet. */
133 0, /* 2: IVECT */
134 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
135 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
136 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
137 0, /* 6: TXSYNC/SYNCLO */
138 0, /* 7: RXSYNC/SYNCHI */
139 0, /* 8: alias for data port */
140 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
141 0, /*10: Misc. TX/RX control bits */
142 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
143 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
144 0, /*13: BAUDHI (default=9600) */
145 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
146 ZSWR15_BREAK_IE,
147 };
148
149 struct zschan *
150 zs_get_chan_addr(zs_unit, channel)
151 int zs_unit, channel;
152 {
153 struct zsdevice *addr;
154 struct zschan *zc;
155
156 if (zs_unit >= NZS)
157 return (NULL);
158 addr = zsaddr[zs_unit];
159 #ifdef DEBUG
160 if (addr == NULL) {
161 db_printf("zs_get_chan_addr(): unit %d channel %d not found\n", zs_unit, channel);
162 Debugger();
163 }
164 #endif
165 if (addr == NULL)
166 return (NULL);
167 if (channel == 0) {
168 zc = &addr->zs_chan_a;
169 } else {
170 zc = &addr->zs_chan_b;
171 }
172 return (zc);
173 }
174
175
176 /****************************************************************
177 * Autoconfig
178 ****************************************************************/
179
180 /* Definition of the driver for autoconfig. */
181 static int zs_match_sbus __P((struct device *, struct cfdata *, void *));
182 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
183 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
184 static void zs_attach_sbus __P((struct device *, struct device *, void *));
185 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
186 static void zs_attach_obio __P((struct device *, struct device *, void *));
187
188 static void zs_attach __P((struct zsc_softc *, int));
189 static int zs_print __P((void *, const char *name));
190
191 struct cfattach zs_ca = {
192 sizeof(struct zsc_softc), zs_match_sbus, zs_attach_sbus
193 };
194
195 struct cfattach zs_mainbus_ca = {
196 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
197 };
198
199 struct cfattach zs_obio_ca = {
200 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
201 };
202
203 extern struct cfdriver zs_cd;
204 extern struct consdev consdev_kd;
205 extern struct consdev consdev_zs;
206 extern struct consdev *cn_hw;
207 extern int stdinnode;
208 extern int fbnode;
209
210 /* Interrupt handlers. */
211 static int zshard __P((void *));
212 static int zssoft __P((void *));
213 static struct intrhand levelsoft = { zssoft };
214
215 static int zs_get_speed __P((struct zs_chanstate *));
216
217
218 /*
219 * Is the zs chip present?
220 */
221 static int
222 zs_match_mainbus(parent, cf, aux)
223 struct device *parent;
224 struct cfdata *cf;
225 void *aux;
226 {
227 struct mainbus_attach_args *ma = aux;
228
229 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
230 return (0);
231
232 return (getpropint(ma->ma_node, "slave", -2) == cf->cf_unit);
233 }
234
235 static int
236 zs_match_sbus(parent, cf, aux)
237 struct device *parent;
238 struct cfdata *cf;
239 void *aux;
240 {
241 struct sbus_attach_args *sa = aux;
242
243 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
244 return (0);
245
246 return 1;
247 }
248
249 static int
250 zs_match_obio(parent, cf, aux)
251 struct device *parent;
252 struct cfdata *cf;
253 void *aux;
254 {
255 #ifdef SUN4U
256 return 0;
257 #else
258 union obio_attach_args *uoba = aux;
259 struct obio4_attach_args *oba;
260
261 if (uoba->uoba_isobio4 == 0) {
262 struct sbus_attach_args *sa = &uoba->uoba_sbus;
263
264 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
265 return (0);
266
267 return (getpropint(sa->sa_node, "slave", -2) == cf->cf_unit);
268 }
269
270 oba = &uoba->uoba_oba4;
271 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
272 1, 0, 0, NULL, NULL));
273 #endif
274 }
275
276 static void
277 zs_attach_mainbus(parent, self, aux)
278 struct device *parent;
279 struct device *self;
280 void *aux;
281 {
282 #ifdef SUN4U
283 return;
284 #else
285 struct zsc_softc *zsc = (void *) self;
286 struct mainbus_attach_args *ma = aux;
287 int zs_unit = zsc->zsc_dev.dv_unit;
288
289 zsc->zsc_bustag = ma->ma_bustag;
290 zsc->zsc_dmatag = ma->ma_dmatag;
291
292 /* Use the mapping setup by the Sun PROM. */
293 if (zsaddr[zs_unit] == NULL)
294 zsaddr[zs_unit] = findzs(zs_unit);
295 if ((void*)zsaddr[zs_unit] != (void*)(u_long)ma->ma_address[0])
296 panic("zsattach_mainbus");
297 zs_attach(zsc, ma->ma_pri);
298 #endif
299 }
300
301
302 static void
303 zs_attach_sbus(parent, self, aux)
304 struct device *parent;
305 struct device *self;
306 void *aux;
307 {
308 struct zsc_softc *zsc = (void *) self;
309 struct sbus_attach_args *sa = aux;
310 int zs_unit = zsc->zsc_dev.dv_unit;
311 struct consdev *cn = NULL;
312
313 zsc->zsc_bustag = sa->sa_bustag;
314 zsc->zsc_dmatag = sa->sa_dmatag;
315
316 /* Use the mapping setup by the Sun PROM. */
317 if (zsaddr[zs_unit] == NULL) {
318 if (sa->sa_npromvaddrs) {
319 /*
320 * We're converting from a 32-bit pointer to a 64-bit
321 * pointer. Since the 32-bit entity is negative, but
322 * the kernel is still mapped into the lower 4GB
323 * range, this needs to be zero-extended.
324 *
325 * XXXXX If we map the kernel and devices into the
326 * high 4GB range, this needs to be changed to
327 * sign-extend the address.
328 */
329 zsaddr[zs_unit] =
330 (struct zsdevice *)
331 (unsigned long)sa->sa_promvaddrs[0];
332 } else {
333 bus_space_handle_t kvaddr;
334
335 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
336 sa->sa_offset,
337 sa->sa_size,
338 BUS_SPACE_MAP_LINEAR,
339 0, &kvaddr) != 0) {
340 printf("%s @ sbus: cannot map registers\n",
341 self->dv_xname);
342 return;
343 }
344 zsaddr[zs_unit] = (struct zsdevice *)
345 (long)kvaddr;
346 }
347 }
348 /*
349 * Check to see if we're the console. We presume the input comes from
350 * the same location as the output, although that may not be true.
351 * To support input from the serial line but output to a display we
352 * would need to generate some really weird consdev vectors.
353 */
354 if (sa->sa_node == stdinnode) {
355 char buf[256];
356 int chan = 0;
357 int len;
358
359 if ((len = OF_instance_to_path(sa->sa_node, buf, sizeof(buf))) > 0) {
360 /* With zs nodes, the last :a or :b selects the channel */
361 if (buf[len] == 0) len--;
362 if (buf[len] == 'b') chan = 1;
363 /* But keyboards don't have a :a or :b */
364 }
365 zs_hwflags[zs_unit][chan] = ZS_HWFLAG_CONSOLE;
366 zs_conschan = zs_get_chan_addr(zs_unit, chan);
367 if (OF_getproplen(sa->sa_node, "keyboard") >= 0) {
368 cn_hw = &consdev_zs;
369 cn = &consdev_kd;
370 } else {
371 cn = &consdev_zs;
372 }
373 }
374 zs_attach(zsc, sa->sa_pri);
375 if (cn) {
376 cn_tab = cn;
377 (*cn->cn_init)(cn);
378 #ifdef KGDB
379 zs_kgdb_init();
380 #endif
381 }
382 }
383
384 static void
385 zs_attach_obio(parent, self, aux)
386 struct device *parent;
387 struct device *self;
388 void *aux;
389 {
390 #ifndef SUN4U
391 struct zsc_softc *zsc = (void *) self;
392 union obio_attach_args *uoba = aux;
393 int zs_unit = zsc->zsc_dev.dv_unit;
394
395 /* Use the mapping setup by the Sun PROM. */
396 if (zsaddr[zs_unit] == NULL)
397 zsaddr[zs_unit] = findzs(zs_unit);
398
399 if (uoba->uoba_isobio4 == 0) {
400 struct sbus_attach_args *sa = &uoba->uoba_sbus;
401 zsc->zsc_bustag = sa->sa_bustag;
402 zsc->zsc_dmatag = sa->sa_dmatag;
403 zs_attach(zsc, sa->sa_pri);
404 } else {
405 struct obio4_attach_args *oba = &uoba->uoba_oba4;
406 zsc->zsc_bustag = oba->oba_bustag;
407 zsc->zsc_dmatag = oba->oba_dmatag;
408 zs_attach(zsc, oba->oba_pri);
409 }
410 #endif
411 }
412 /*
413 * Attach a found zs.
414 *
415 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
416 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
417 */
418 static void
419 zs_attach(zsc, pri)
420 struct zsc_softc *zsc;
421 int pri;
422 {
423 struct zsc_attach_args zsc_args;
424 volatile struct zschan *zc;
425 struct zs_chanstate *cs;
426 int s, zs_unit, channel;
427 static int didintr, prevpri;
428
429 printf(" softpri %d\n", PIL_TTY);
430
431 /*
432 * Initialize software state for each channel.
433 */
434 zs_unit = zsc->zsc_dev.dv_unit;
435 for (channel = 0; channel < 2; channel++) {
436 zsc_args.channel = channel;
437 zsc_args.hwflags = zs_hwflags[zs_unit][channel];
438 cs = &zsc->zsc_cs_store[channel];
439 zsc->zsc_cs[channel] = cs;
440
441 cs->cs_channel = channel;
442 cs->cs_private = NULL;
443 cs->cs_ops = &zsops_null;
444 cs->cs_brg_clk = PCLK / 16;
445
446 zc = zs_get_chan_addr(zs_unit, channel);
447 if (zs_hwflags[zs_unit][channel] == ZS_HWFLAG_CONSOLE) {
448 zs_conschan = (struct zschan *)zc;
449 }
450 cs->cs_reg_csr = &zc->zc_csr;
451 cs->cs_reg_data = &zc->zc_data;
452
453 bcopy(zs_init_reg, cs->cs_creg, 16);
454 bcopy(zs_init_reg, cs->cs_preg, 16);
455
456 /* XXX: Get these from the PROM properties! */
457 /* XXX: See the mvme167 code. Better. */
458 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
459 cs->cs_defspeed = zs_get_speed(cs);
460 else
461 cs->cs_defspeed = zs_defspeed[zs_unit][channel];
462 cs->cs_defcflag = zs_def_cflag;
463
464 /* Make these correspond to cs_defcflag (-crtscts) */
465 cs->cs_rr0_dcd = ZSRR0_DCD;
466 cs->cs_rr0_cts = 0;
467 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
468 cs->cs_wr5_rts = 0;
469
470 /*
471 * Clear the master interrupt enable.
472 * The INTENA is common to both channels,
473 * so just do it on the A channel.
474 */
475 if (channel == 0) {
476 zs_write_reg(cs, 9, 0);
477 }
478
479 /*
480 * Look for a child driver for this channel.
481 * The child attach will setup the hardware.
482 */
483 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
484 /* No sub-driver. Just reset it. */
485 u_char reset = (channel == 0) ?
486 ZSWR9_A_RESET : ZSWR9_B_RESET;
487 s = splzs();
488 zs_write_reg(cs, 9, reset);
489 splx(s);
490 }
491 }
492
493 /*
494 * Now safe to install interrupt handlers. Note the arguments
495 * to the interrupt handlers aren't used. Note, we only do this
496 * once since both SCCs interrupt at the same level and vector.
497 */
498 if (!didintr) {
499 didintr = 1;
500 prevpri = pri;
501 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
502 intr_establish(PIL_TTY, &levelsoft);
503 } else if (pri != prevpri)
504 panic("broken zs interrupt scheme");
505
506 evcnt_attach(&zsc->zsc_dev, "intr", &zsc->zsc_intrcnt);
507
508 /*
509 * Set the master interrupt enable and interrupt vector.
510 * (common to both channels, do it on A)
511 */
512 cs = zsc->zsc_cs[0];
513 s = splhigh();
514 /* interrupt vector */
515 zs_write_reg(cs, 2, zs_init_reg[2]);
516 /* master interrupt control (enable) */
517 zs_write_reg(cs, 9, zs_init_reg[9]);
518 splx(s);
519
520 #if 0
521 /*
522 * XXX: L1A hack - We would like to be able to break into
523 * the debugger during the rest of autoconfiguration, so
524 * lower interrupts just enough to let zs interrupts in.
525 * This is done after both zs devices are attached.
526 */
527 if (zs_unit == 1) {
528 printf("zs1: enabling zs interrupts\n");
529 (void)splfd(); /* XXX: splzs - 1 */
530 }
531 #endif
532 }
533
534 static int
535 zs_print(aux, name)
536 void *aux;
537 const char *name;
538 {
539 struct zsc_attach_args *args = aux;
540
541 if (name != NULL)
542 printf("%s: ", name);
543
544 if (args->channel != -1)
545 printf(" channel %d", args->channel);
546
547 return (UNCONF);
548 }
549
550 static volatile int zssoftpending;
551
552 /*
553 * Our ZS chips all share a common, autovectored interrupt,
554 * so we have to look at all of them on each interrupt.
555 */
556 static int
557 zshard(arg)
558 void *arg;
559 {
560 register struct zsc_softc *zsc;
561 register int unit, rr3, rval, softreq;
562
563 rval = softreq = 0;
564 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
565 zsc = zs_cd.cd_devs[unit];
566 if (zsc == NULL)
567 continue;
568 rr3 = zsc_intr_hard(zsc);
569 /* Count up the interrupts. */
570 if (rr3) {
571 rval |= rr3;
572 zsc->zsc_intrcnt.ev_count++;
573 }
574 softreq |= zsc->zsc_cs[0]->cs_softreq;
575 softreq |= zsc->zsc_cs[1]->cs_softreq;
576 }
577
578 /* We are at splzs here, so no need to lock. */
579 if (softreq && (zssoftpending == 0)) {
580 zssoftpending = PIL_TTY;
581 send_softint(-1, PIL_TTY, &levelsoft);
582 }
583 return (rval);
584 }
585
586 /*
587 * Similar scheme as for zshard (look at all of them)
588 */
589 static int
590 zssoft(arg)
591 void *arg;
592 {
593 register struct zsc_softc *zsc;
594 register int s, unit;
595
596 /* This is not the only ISR on this IPL. */
597 if (zssoftpending == 0)
598 return (0);
599 zssoftpending = 0;
600
601 /* Make sure we call the tty layer at spltty. */
602 s = spltty();
603 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
604 zsc = zs_cd.cd_devs[unit];
605 if (zsc == NULL)
606 continue;
607 (void)zsc_intr_soft(zsc);
608 #ifdef TTY_DEBUG
609 {
610 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
611 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
612 if (zst0->zst_overflows || zst1->zst_overflows ) {
613 struct trapframe *frame = (struct trapframe *)arg;
614
615 printf("zs silo overflow from %p\n",
616 (long)frame->tf_pc);
617 }
618 }
619 #endif
620 }
621 splx(s);
622 return (1);
623 }
624
625
626 /*
627 * Compute the current baud rate given a ZS channel.
628 */
629 static int
630 zs_get_speed(cs)
631 struct zs_chanstate *cs;
632 {
633 int tconst;
634
635 tconst = zs_read_reg(cs, 12);
636 tconst |= zs_read_reg(cs, 13) << 8;
637 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
638 }
639
640 /*
641 * MD functions for setting the baud rate and control modes.
642 */
643 int
644 zs_set_speed(cs, bps)
645 struct zs_chanstate *cs;
646 int bps; /* bits per second */
647 {
648 int tconst, real_bps;
649
650 if (bps == 0)
651 return (0);
652
653 #ifdef DIAGNOSTIC
654 if (cs->cs_brg_clk == 0)
655 panic("zs_set_speed");
656 #endif
657
658 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
659 if (tconst < 0)
660 return (EINVAL);
661
662 /* Convert back to make sure we can do it. */
663 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
664
665 /* XXX - Allow some tolerance here? */
666 if (real_bps != bps)
667 return (EINVAL);
668
669 cs->cs_preg[12] = tconst;
670 cs->cs_preg[13] = tconst >> 8;
671
672 /* Caller will stuff the pending registers. */
673 return (0);
674 }
675
676 int
677 zs_set_modes(cs, cflag)
678 struct zs_chanstate *cs;
679 int cflag; /* bits per second */
680 {
681 int s;
682
683 /*
684 * Output hardware flow control on the chip is horrendous:
685 * if carrier detect drops, the receiver is disabled, and if
686 * CTS drops, the transmitter is stoped IN MID CHARACTER!
687 * Therefore, NEVER set the HFC bit, and instead use the
688 * status interrupt to detect CTS changes.
689 */
690 s = splzs();
691 cs->cs_rr0_pps = 0;
692 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
693 cs->cs_rr0_dcd = 0;
694 if ((cflag & MDMBUF) == 0)
695 cs->cs_rr0_pps = ZSRR0_DCD;
696 } else
697 cs->cs_rr0_dcd = ZSRR0_DCD;
698 if ((cflag & CRTSCTS) != 0) {
699 cs->cs_wr5_dtr = ZSWR5_DTR;
700 cs->cs_wr5_rts = ZSWR5_RTS;
701 cs->cs_rr0_cts = ZSRR0_CTS;
702 } else if ((cflag & CDTRCTS) != 0) {
703 cs->cs_wr5_dtr = 0;
704 cs->cs_wr5_rts = ZSWR5_DTR;
705 cs->cs_rr0_cts = ZSRR0_CTS;
706 } else if ((cflag & MDMBUF) != 0) {
707 cs->cs_wr5_dtr = 0;
708 cs->cs_wr5_rts = ZSWR5_DTR;
709 cs->cs_rr0_cts = ZSRR0_DCD;
710 } else {
711 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
712 cs->cs_wr5_rts = 0;
713 cs->cs_rr0_cts = 0;
714 }
715 splx(s);
716
717 /* Caller will stuff the pending registers. */
718 return (0);
719 }
720
721
722 /*
723 * Read or write the chip with suitable delays.
724 */
725
726 u_char
727 zs_read_reg(cs, reg)
728 struct zs_chanstate *cs;
729 u_char reg;
730 {
731 u_char val;
732
733 *cs->cs_reg_csr = reg;
734 ZS_DELAY();
735 val = *cs->cs_reg_csr;
736 ZS_DELAY();
737 return (val);
738 }
739
740 void
741 zs_write_reg(cs, reg, val)
742 struct zs_chanstate *cs;
743 u_char reg, val;
744 {
745 *cs->cs_reg_csr = reg;
746 ZS_DELAY();
747 *cs->cs_reg_csr = val;
748 ZS_DELAY();
749 }
750
751 u_char
752 zs_read_csr(cs)
753 struct zs_chanstate *cs;
754 {
755 register u_char val;
756
757 val = *cs->cs_reg_csr;
758 ZS_DELAY();
759 return (val);
760 }
761
762 void zs_write_csr(cs, val)
763 struct zs_chanstate *cs;
764 u_char val;
765 {
766 *cs->cs_reg_csr = val;
767 ZS_DELAY();
768 }
769
770 u_char zs_read_data(cs)
771 struct zs_chanstate *cs;
772 {
773 register u_char val;
774
775 val = *cs->cs_reg_data;
776 ZS_DELAY();
777 return (val);
778 }
779
780 void zs_write_data(cs, val)
781 struct zs_chanstate *cs;
782 u_char val;
783 {
784 *cs->cs_reg_data = val;
785 ZS_DELAY();
786 }
787
788 /****************************************************************
789 * Console support functions (Sun specific!)
790 * Note: this code is allowed to know about the layout of
791 * the chip registers, and uses that to keep things simple.
792 * XXX - I think I like the mvme167 code better. -gwr
793 ****************************************************************/
794
795 extern void Debugger __P((void));
796 void *zs_conschan;
797
798 /*
799 * Handle user request to enter kernel debugger.
800 */
801 void
802 zs_abort(cs)
803 struct zs_chanstate *cs;
804 {
805 register volatile struct zschan *zc = zs_conschan;
806 int rr0;
807
808 /* Wait for end of break to avoid PROM abort. */
809 /* XXX - Limit the wait? */
810 do {
811 rr0 = zc->zc_csr;
812 ZS_DELAY();
813 } while (rr0 & ZSRR0_BREAK);
814
815 #if defined(KGDB)
816 zskgdb(cs);
817 #elif defined(DDB)
818 {
819 extern int db_active;
820
821 if (!db_active)
822 Debugger();
823 else
824 /* Debugger is probably hozed */
825 callrom();
826 }
827 #else
828 printf("stopping on keyboard abort\n");
829 callrom();
830 #endif
831 }
832
833 /*
834 * Polled input char.
835 */
836 int
837 zs_getc(arg)
838 void *arg;
839 {
840 register volatile struct zschan *zc = arg;
841 register int s, c, rr0;
842
843 s = splhigh();
844 /* Wait for a character to arrive. */
845 do {
846 rr0 = zc->zc_csr;
847 ZS_DELAY();
848 } while ((rr0 & ZSRR0_RX_READY) == 0);
849
850 c = zc->zc_data;
851 ZS_DELAY();
852 splx(s);
853
854 /*
855 * This is used by the kd driver to read scan codes,
856 * so don't translate '\r' ==> '\n' here...
857 */
858 return (c);
859 }
860
861 /*
862 * Polled output char.
863 */
864 void
865 zs_putc(arg, c)
866 void *arg;
867 int c;
868 {
869 register volatile struct zschan *zc = arg;
870 register int s, rr0;
871
872 s = splhigh();
873
874 /* Wait for transmitter to become ready. */
875 do {
876 rr0 = zc->zc_csr;
877 ZS_DELAY();
878 } while ((rr0 & ZSRR0_TX_READY) == 0);
879
880 /*
881 * Send the next character.
882 * Now you'd think that this could be followed by a ZS_DELAY()
883 * just like all the other chip accesses, but it turns out that
884 * the `transmit-ready' interrupt isn't de-asserted until
885 * some period of time after the register write completes
886 * (more than a couple instructions). So to avoid stray
887 * interrupts we put in the 2us delay regardless of cpu model.
888 */
889 zc->zc_data = c;
890 delay(2);
891
892 splx(s);
893 }
894
895 /*****************************************************************/
896
897 static void zscninit __P((struct consdev *));
898 static int zscngetc __P((dev_t));
899 static void zscnputc __P((dev_t, int));
900 static void zscnpollc __P((dev_t, int));
901 /*
902 * Console table shared by ttya, ttyb
903 */
904 struct consdev consdev_zs = {
905 nullcnprobe,
906 zscninit,
907 zscngetc,
908 zscnputc,
909 zscnpollc,
910 NULL,
911 };
912
913 static void
914 zscninit(cn)
915 struct consdev *cn;
916 {
917 }
918
919 /*
920 * Polled console input putchar.
921 */
922 static int
923 zscngetc(dev)
924 dev_t dev;
925 {
926 return (zs_getc(zs_conschan));
927 }
928
929 /*
930 * Polled console output putchar.
931 */
932 static void
933 zscnputc(dev, c)
934 dev_t dev;
935 int c;
936 {
937 zs_putc(zs_conschan, c);
938 }
939
940 int swallow_zsintrs;
941
942 static void
943 zscnpollc(dev, on)
944 dev_t dev;
945 int on;
946 {
947 /*
948 * Need to tell zs driver to acknowledge all interrupts or we get
949 * annoying spurious interrupt messages. This is because mucking
950 * with spl() levels during polling does not prevent interrupts from
951 * being generated.
952 */
953
954 if (on) swallow_zsintrs++;
955 else swallow_zsintrs--;
956 }
957