zs.c revision 1.17 1 /* $NetBSD: zs.c,v 1.17 2000/04/10 13:34:18 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/openfirm.h>
63 #include <machine/bsd_openprom.h>
64 #include <machine/conf.h>
65 #include <machine/cpu.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72 #include <ddb/db_output.h>
73
74 #include <sparc64/sparc64/vaddrs.h>
75 #include <sparc64/sparc64/auxreg.h>
76 #include <sparc64/dev/cons.h>
77
78 #include "kbd.h" /* NKBD */
79 #include "zs.h" /* NZS */
80
81 /* Make life easier for the initialized arrays here. */
82 #if NZS < 3
83 #undef NZS
84 #define NZS 3
85 #endif
86
87 /*
88 * Some warts needed by z8530tty.c -
89 * The default parity REALLY needs to be the same as the PROM uses,
90 * or you can not see messages done with printf during boot-up...
91 */
92 int zs_def_cflag = (CREAD | CS8 | HUPCL);
93 int zs_major = 12;
94
95 /*
96 * The Sun provides a 4.9152 MHz clock to the ZS chips.
97 */
98 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
99
100 #define ZS_DELAY()
101
102 /* The layout of this is hardware-dependent (padding, order). */
103 struct zschan {
104 volatile u_char zc_csr; /* ctrl,status, and indirect access */
105 u_char zc_xxx0;
106 volatile u_char zc_data; /* data */
107 u_char zc_xxx1;
108 };
109 struct zsdevice {
110 /* Yes, they are backwards. */
111 struct zschan zs_chan_b;
112 struct zschan zs_chan_a;
113 };
114
115 /* Saved PROM mappings */
116 static struct zsdevice *zsaddr[NZS];
117
118 /* Flags from cninit() */
119 static int zs_hwflags[NZS][2];
120
121 /* Default speed for each channel */
122 static int zs_defspeed[NZS][2] = {
123 { 9600, /* ttya */
124 9600 }, /* ttyb */
125 { 1200, /* keyboard */
126 1200 }, /* mouse */
127 { 9600, /* ttyc */
128 9600 }, /* ttyd */
129 };
130
131 static u_char zs_init_reg[16] = {
132 0, /* 0: CMD (reset, etc.) */
133 0, /* 1: No interrupts yet. */
134 0, /* 2: IVECT */
135 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
136 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
137 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
138 0, /* 6: TXSYNC/SYNCLO */
139 0, /* 7: RXSYNC/SYNCHI */
140 0, /* 8: alias for data port */
141 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
142 0, /*10: Misc. TX/RX control bits */
143 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
145 0, /*13: BAUDHI (default=9600) */
146 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
147 ZSWR15_BREAK_IE,
148 };
149
150 struct zschan *
151 zs_get_chan_addr(zs_unit, channel)
152 int zs_unit, channel;
153 {
154 struct zsdevice *addr;
155 struct zschan *zc;
156
157 if (zs_unit >= NZS)
158 return (NULL);
159 addr = zsaddr[zs_unit];
160 #if defined(DEBUG) && defined(DDB)
161 if (addr == NULL) {
162 db_printf("zs_get_chan_addr(): unit %d channel %d not found\n", zs_unit, channel);
163 Debugger();
164 }
165 #endif
166 if (addr == NULL)
167 return (NULL);
168 if (channel == 0) {
169 zc = &addr->zs_chan_a;
170 } else {
171 zc = &addr->zs_chan_b;
172 }
173 return (zc);
174 }
175
176
177 /****************************************************************
178 * Autoconfig
179 ****************************************************************/
180
181 /* Definition of the driver for autoconfig. */
182 static int zs_match_sbus __P((struct device *, struct cfdata *, void *));
183 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
184 static int zs_match_obio __P((struct device *, struct cfdata *, void *));
185 static void zs_attach_sbus __P((struct device *, struct device *, void *));
186 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
187 static void zs_attach_obio __P((struct device *, struct device *, void *));
188
189 static void zs_attach __P((struct zsc_softc *, int));
190 static int zs_print __P((void *, const char *name));
191
192 struct cfattach zs_ca = {
193 sizeof(struct zsc_softc), zs_match_sbus, zs_attach_sbus
194 };
195
196 struct cfattach zs_mainbus_ca = {
197 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
198 };
199
200 struct cfattach zs_obio_ca = {
201 sizeof(struct zsc_softc), zs_match_obio, zs_attach_obio
202 };
203
204 extern struct cfdriver zs_cd;
205 extern struct consdev consdev_kd;
206 extern struct consdev consdev_zs;
207 extern struct consdev *cn_hw;
208 extern int stdinnode;
209 extern int fbnode;
210
211 /* Interrupt handlers. */
212 static int zshard __P((void *));
213 static int zssoft __P((void *));
214 static struct intrhand levelsoft = { zssoft };
215
216 static int zs_get_speed __P((struct zs_chanstate *));
217
218
219 /*
220 * Is the zs chip present?
221 */
222 static int
223 zs_match_mainbus(parent, cf, aux)
224 struct device *parent;
225 struct cfdata *cf;
226 void *aux;
227 {
228 struct mainbus_attach_args *ma = aux;
229
230 if (strcmp(cf->cf_driver->cd_name, ma->ma_name) != 0)
231 return (0);
232
233 return (getpropint(ma->ma_node, "slave", -2) == cf->cf_unit);
234 }
235
236 static int
237 zs_match_sbus(parent, cf, aux)
238 struct device *parent;
239 struct cfdata *cf;
240 void *aux;
241 {
242 struct sbus_attach_args *sa = aux;
243
244 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
245 return (0);
246
247 return 1;
248 }
249
250 static int
251 zs_match_obio(parent, cf, aux)
252 struct device *parent;
253 struct cfdata *cf;
254 void *aux;
255 {
256 #ifdef SUN4U
257 return 0;
258 #else
259 union obio_attach_args *uoba = aux;
260 struct obio4_attach_args *oba;
261
262 if (uoba->uoba_isobio4 == 0) {
263 struct sbus_attach_args *sa = &uoba->uoba_sbus;
264
265 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
266 return (0);
267
268 return (getpropint(sa->sa_node, "slave", -2) == cf->cf_unit);
269 }
270
271 oba = &uoba->uoba_oba4;
272 return (bus_space_probe(oba->oba_bustag, 0, oba->oba_paddr,
273 1, 0, 0, NULL, NULL));
274 #endif
275 }
276
277 static void
278 zs_attach_mainbus(parent, self, aux)
279 struct device *parent;
280 struct device *self;
281 void *aux;
282 {
283 #ifdef SUN4U
284 return;
285 #else
286 struct zsc_softc *zsc = (void *) self;
287 struct mainbus_attach_args *ma = aux;
288 int zs_unit = zsc->zsc_dev.dv_unit;
289
290 zsc->zsc_bustag = ma->ma_bustag;
291 zsc->zsc_dmatag = ma->ma_dmatag;
292
293 /* Use the mapping setup by the Sun PROM. */
294 if (zsaddr[zs_unit] == NULL)
295 zsaddr[zs_unit] = findzs(zs_unit);
296 if ((void*)zsaddr[zs_unit] != (void*)(u_long)ma->ma_address[0])
297 panic("zsattach_mainbus");
298 zs_attach(zsc, ma->ma_pri);
299 #endif
300 }
301
302
303 static void
304 zs_attach_sbus(parent, self, aux)
305 struct device *parent;
306 struct device *self;
307 void *aux;
308 {
309 struct zsc_softc *zsc = (void *) self;
310 struct sbus_attach_args *sa = aux;
311 int zs_unit = zsc->zsc_dev.dv_unit;
312 struct consdev *cn = NULL;
313
314 zsc->zsc_bustag = sa->sa_bustag;
315 zsc->zsc_dmatag = sa->sa_dmatag;
316
317 /* Use the mapping setup by the Sun PROM. */
318 if (zsaddr[zs_unit] == NULL) {
319 if (sa->sa_npromvaddrs) {
320 /*
321 * We're converting from a 32-bit pointer to a 64-bit
322 * pointer. Since the 32-bit entity is negative, but
323 * the kernel is still mapped into the lower 4GB
324 * range, this needs to be zero-extended.
325 *
326 * XXXXX If we map the kernel and devices into the
327 * high 4GB range, this needs to be changed to
328 * sign-extend the address.
329 */
330 zsaddr[zs_unit] =
331 (struct zsdevice *)
332 (unsigned long)sa->sa_promvaddrs[0];
333 } else {
334 bus_space_handle_t kvaddr;
335
336 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
337 sa->sa_offset,
338 sa->sa_size,
339 BUS_SPACE_MAP_LINEAR,
340 0, &kvaddr) != 0) {
341 printf("%s @ sbus: cannot map registers\n",
342 self->dv_xname);
343 return;
344 }
345 zsaddr[zs_unit] = (struct zsdevice *)
346 (long)kvaddr;
347 }
348 }
349 /*
350 * Check to see if we're the console. We presume the input comes from
351 * the same location as the output, although that may not be true.
352 * To support input from the serial line but output to a display we
353 * would need to generate some really weird consdev vectors.
354 */
355 if (sa->sa_node == stdinnode) {
356 char buf[256];
357 int chan = 0;
358 int len;
359
360 if ((len = OF_instance_to_path(sa->sa_node, buf, sizeof(buf))) > 0) {
361 /* With zs nodes, the last :a or :b selects the channel */
362 if (buf[len] == 0) len--;
363 if (buf[len] == 'b') chan = 1;
364 /* But keyboards don't have a :a or :b */
365 }
366 zs_hwflags[zs_unit][chan] = ZS_HWFLAG_CONSOLE;
367 zs_conschan = zs_get_chan_addr(zs_unit, chan);
368 if (OF_getproplen(sa->sa_node, "keyboard") >= 0) {
369 cn_hw = &consdev_zs;
370 cn = &consdev_kd;
371 } else {
372 cn = &consdev_zs;
373 }
374 }
375 zs_attach(zsc, sa->sa_pri);
376 if (cn) {
377 cn_tab = cn;
378 (*cn->cn_init)(cn);
379 #ifdef KGDB
380 zs_kgdb_init();
381 #endif
382 }
383 }
384
385 static void
386 zs_attach_obio(parent, self, aux)
387 struct device *parent;
388 struct device *self;
389 void *aux;
390 {
391 #ifndef SUN4U
392 struct zsc_softc *zsc = (void *) self;
393 union obio_attach_args *uoba = aux;
394 int zs_unit = zsc->zsc_dev.dv_unit;
395
396 /* Use the mapping setup by the Sun PROM. */
397 if (zsaddr[zs_unit] == NULL)
398 zsaddr[zs_unit] = findzs(zs_unit);
399
400 if (uoba->uoba_isobio4 == 0) {
401 struct sbus_attach_args *sa = &uoba->uoba_sbus;
402 zsc->zsc_bustag = sa->sa_bustag;
403 zsc->zsc_dmatag = sa->sa_dmatag;
404 zs_attach(zsc, sa->sa_pri);
405 } else {
406 struct obio4_attach_args *oba = &uoba->uoba_oba4;
407 zsc->zsc_bustag = oba->oba_bustag;
408 zsc->zsc_dmatag = oba->oba_dmatag;
409 zs_attach(zsc, oba->oba_pri);
410 }
411 #endif
412 }
413 /*
414 * Attach a found zs.
415 *
416 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
417 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
418 */
419 static void
420 zs_attach(zsc, pri)
421 struct zsc_softc *zsc;
422 int pri;
423 {
424 struct zsc_attach_args zsc_args;
425 volatile struct zschan *zc;
426 struct zs_chanstate *cs;
427 int s, zs_unit, channel;
428 static int didintr, prevpri;
429
430 printf(" softpri %d\n", PIL_TTY);
431
432 /*
433 * Initialize software state for each channel.
434 */
435 zs_unit = zsc->zsc_dev.dv_unit;
436 for (channel = 0; channel < 2; channel++) {
437 zsc_args.channel = channel;
438 zsc_args.hwflags = zs_hwflags[zs_unit][channel];
439 cs = &zsc->zsc_cs_store[channel];
440 zsc->zsc_cs[channel] = cs;
441
442 cs->cs_channel = channel;
443 cs->cs_private = NULL;
444 cs->cs_ops = &zsops_null;
445 cs->cs_brg_clk = PCLK / 16;
446
447 zc = zs_get_chan_addr(zs_unit, channel);
448 if (zs_hwflags[zs_unit][channel] == ZS_HWFLAG_CONSOLE) {
449 zs_conschan = (struct zschan *)zc;
450 }
451 cs->cs_reg_csr = &zc->zc_csr;
452 cs->cs_reg_data = &zc->zc_data;
453
454 bcopy(zs_init_reg, cs->cs_creg, 16);
455 bcopy(zs_init_reg, cs->cs_preg, 16);
456
457 /* XXX: Get these from the PROM properties! */
458 /* XXX: See the mvme167 code. Better. */
459 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
460 cs->cs_defspeed = zs_get_speed(cs);
461 else
462 cs->cs_defspeed = zs_defspeed[zs_unit][channel];
463 cs->cs_defcflag = zs_def_cflag;
464
465 /* Make these correspond to cs_defcflag (-crtscts) */
466 cs->cs_rr0_dcd = ZSRR0_DCD;
467 cs->cs_rr0_cts = 0;
468 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
469 cs->cs_wr5_rts = 0;
470
471 /*
472 * Clear the master interrupt enable.
473 * The INTENA is common to both channels,
474 * so just do it on the A channel.
475 */
476 if (channel == 0) {
477 zs_write_reg(cs, 9, 0);
478 }
479
480 /*
481 * Look for a child driver for this channel.
482 * The child attach will setup the hardware.
483 */
484 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
485 /* No sub-driver. Just reset it. */
486 u_char reset = (channel == 0) ?
487 ZSWR9_A_RESET : ZSWR9_B_RESET;
488 s = splzs();
489 zs_write_reg(cs, 9, reset);
490 splx(s);
491 }
492 }
493
494 /*
495 * Now safe to install interrupt handlers. Note the arguments
496 * to the interrupt handlers aren't used. Note, we only do this
497 * once since both SCCs interrupt at the same level and vector.
498 */
499 if (!didintr) {
500 didintr = 1;
501 prevpri = pri;
502 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
503 intr_establish(PIL_TTY, &levelsoft);
504 } else if (pri != prevpri)
505 panic("broken zs interrupt scheme");
506
507 evcnt_attach(&zsc->zsc_dev, "intr", &zsc->zsc_intrcnt);
508
509 /*
510 * Set the master interrupt enable and interrupt vector.
511 * (common to both channels, do it on A)
512 */
513 cs = zsc->zsc_cs[0];
514 s = splhigh();
515 /* interrupt vector */
516 zs_write_reg(cs, 2, zs_init_reg[2]);
517 /* master interrupt control (enable) */
518 zs_write_reg(cs, 9, zs_init_reg[9]);
519 splx(s);
520
521 #if 0
522 /*
523 * XXX: L1A hack - We would like to be able to break into
524 * the debugger during the rest of autoconfiguration, so
525 * lower interrupts just enough to let zs interrupts in.
526 * This is done after both zs devices are attached.
527 */
528 if (zs_unit == 1) {
529 printf("zs1: enabling zs interrupts\n");
530 (void)splfd(); /* XXX: splzs - 1 */
531 }
532 #endif
533 }
534
535 static int
536 zs_print(aux, name)
537 void *aux;
538 const char *name;
539 {
540 struct zsc_attach_args *args = aux;
541
542 if (name != NULL)
543 printf("%s: ", name);
544
545 if (args->channel != -1)
546 printf(" channel %d", args->channel);
547
548 return (UNCONF);
549 }
550
551 static volatile int zssoftpending;
552
553 /*
554 * Our ZS chips all share a common, autovectored interrupt,
555 * so we have to look at all of them on each interrupt.
556 */
557 static int
558 zshard(arg)
559 void *arg;
560 {
561 register struct zsc_softc *zsc;
562 register int unit, rr3, rval, softreq;
563
564 rval = softreq = 0;
565 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
566 zsc = zs_cd.cd_devs[unit];
567 if (zsc == NULL)
568 continue;
569 rr3 = zsc_intr_hard(zsc);
570 /* Count up the interrupts. */
571 if (rr3) {
572 rval |= rr3;
573 zsc->zsc_intrcnt.ev_count++;
574 }
575 softreq |= zsc->zsc_cs[0]->cs_softreq;
576 softreq |= zsc->zsc_cs[1]->cs_softreq;
577 }
578
579 /* We are at splzs here, so no need to lock. */
580 if (softreq && (zssoftpending == 0)) {
581 zssoftpending = PIL_TTY;
582 send_softint(-1, PIL_TTY, &levelsoft);
583 }
584 return (rval);
585 }
586
587 /*
588 * Similar scheme as for zshard (look at all of them)
589 */
590 static int
591 zssoft(arg)
592 void *arg;
593 {
594 register struct zsc_softc *zsc;
595 register int s, unit;
596
597 /* This is not the only ISR on this IPL. */
598 if (zssoftpending == 0)
599 return (0);
600 zssoftpending = 0;
601
602 /* Make sure we call the tty layer at spltty. */
603 s = spltty();
604 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
605 zsc = zs_cd.cd_devs[unit];
606 if (zsc == NULL)
607 continue;
608 (void)zsc_intr_soft(zsc);
609 #ifdef TTY_DEBUG
610 {
611 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
612 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
613 if (zst0->zst_overflows || zst1->zst_overflows ) {
614 struct trapframe *frame = (struct trapframe *)arg;
615
616 printf("zs silo overflow from %p\n",
617 (long)frame->tf_pc);
618 }
619 }
620 #endif
621 }
622 splx(s);
623 return (1);
624 }
625
626
627 /*
628 * Compute the current baud rate given a ZS channel.
629 */
630 static int
631 zs_get_speed(cs)
632 struct zs_chanstate *cs;
633 {
634 int tconst;
635
636 tconst = zs_read_reg(cs, 12);
637 tconst |= zs_read_reg(cs, 13) << 8;
638 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
639 }
640
641 /*
642 * MD functions for setting the baud rate and control modes.
643 */
644 int
645 zs_set_speed(cs, bps)
646 struct zs_chanstate *cs;
647 int bps; /* bits per second */
648 {
649 int tconst, real_bps;
650
651 if (bps == 0)
652 return (0);
653
654 #ifdef DIAGNOSTIC
655 if (cs->cs_brg_clk == 0)
656 panic("zs_set_speed");
657 #endif
658
659 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
660 if (tconst < 0)
661 return (EINVAL);
662
663 /* Convert back to make sure we can do it. */
664 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
665
666 /* XXX - Allow some tolerance here? */
667 if (real_bps != bps)
668 return (EINVAL);
669
670 cs->cs_preg[12] = tconst;
671 cs->cs_preg[13] = tconst >> 8;
672
673 /* Caller will stuff the pending registers. */
674 return (0);
675 }
676
677 int
678 zs_set_modes(cs, cflag)
679 struct zs_chanstate *cs;
680 int cflag; /* bits per second */
681 {
682 int s;
683
684 /*
685 * Output hardware flow control on the chip is horrendous:
686 * if carrier detect drops, the receiver is disabled, and if
687 * CTS drops, the transmitter is stoped IN MID CHARACTER!
688 * Therefore, NEVER set the HFC bit, and instead use the
689 * status interrupt to detect CTS changes.
690 */
691 s = splzs();
692 cs->cs_rr0_pps = 0;
693 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
694 cs->cs_rr0_dcd = 0;
695 if ((cflag & MDMBUF) == 0)
696 cs->cs_rr0_pps = ZSRR0_DCD;
697 } else
698 cs->cs_rr0_dcd = ZSRR0_DCD;
699 if ((cflag & CRTSCTS) != 0) {
700 cs->cs_wr5_dtr = ZSWR5_DTR;
701 cs->cs_wr5_rts = ZSWR5_RTS;
702 cs->cs_rr0_cts = ZSRR0_CTS;
703 } else if ((cflag & CDTRCTS) != 0) {
704 cs->cs_wr5_dtr = 0;
705 cs->cs_wr5_rts = ZSWR5_DTR;
706 cs->cs_rr0_cts = ZSRR0_CTS;
707 } else if ((cflag & MDMBUF) != 0) {
708 cs->cs_wr5_dtr = 0;
709 cs->cs_wr5_rts = ZSWR5_DTR;
710 cs->cs_rr0_cts = ZSRR0_DCD;
711 } else {
712 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
713 cs->cs_wr5_rts = 0;
714 cs->cs_rr0_cts = 0;
715 }
716 splx(s);
717
718 /* Caller will stuff the pending registers. */
719 return (0);
720 }
721
722
723 /*
724 * Read or write the chip with suitable delays.
725 */
726
727 u_char
728 zs_read_reg(cs, reg)
729 struct zs_chanstate *cs;
730 u_char reg;
731 {
732 u_char val;
733
734 *cs->cs_reg_csr = reg;
735 ZS_DELAY();
736 val = *cs->cs_reg_csr;
737 ZS_DELAY();
738 return (val);
739 }
740
741 void
742 zs_write_reg(cs, reg, val)
743 struct zs_chanstate *cs;
744 u_char reg, val;
745 {
746 *cs->cs_reg_csr = reg;
747 ZS_DELAY();
748 *cs->cs_reg_csr = val;
749 ZS_DELAY();
750 }
751
752 u_char
753 zs_read_csr(cs)
754 struct zs_chanstate *cs;
755 {
756 register u_char val;
757
758 val = *cs->cs_reg_csr;
759 ZS_DELAY();
760 return (val);
761 }
762
763 void zs_write_csr(cs, val)
764 struct zs_chanstate *cs;
765 u_char val;
766 {
767 *cs->cs_reg_csr = val;
768 ZS_DELAY();
769 }
770
771 u_char zs_read_data(cs)
772 struct zs_chanstate *cs;
773 {
774 register u_char val;
775
776 val = *cs->cs_reg_data;
777 ZS_DELAY();
778 return (val);
779 }
780
781 void zs_write_data(cs, val)
782 struct zs_chanstate *cs;
783 u_char val;
784 {
785 *cs->cs_reg_data = val;
786 ZS_DELAY();
787 }
788
789 /****************************************************************
790 * Console support functions (Sun specific!)
791 * Note: this code is allowed to know about the layout of
792 * the chip registers, and uses that to keep things simple.
793 * XXX - I think I like the mvme167 code better. -gwr
794 ****************************************************************/
795
796 extern void Debugger __P((void));
797 void *zs_conschan;
798
799 /*
800 * Handle user request to enter kernel debugger.
801 */
802 void
803 zs_abort(cs)
804 struct zs_chanstate *cs;
805 {
806 register volatile struct zschan *zc = zs_conschan;
807 int rr0;
808
809 /* Wait for end of break to avoid PROM abort. */
810 /* XXX - Limit the wait? */
811 do {
812 rr0 = zc->zc_csr;
813 ZS_DELAY();
814 } while (rr0 & ZSRR0_BREAK);
815
816 #if defined(KGDB)
817 zskgdb(cs);
818 #elif defined(DDB)
819 {
820 extern int db_active;
821
822 if (!db_active)
823 Debugger();
824 else
825 /* Debugger is probably hozed */
826 callrom();
827 }
828 #else
829 printf("stopping on keyboard abort\n");
830 callrom();
831 #endif
832 }
833
834 /*
835 * Polled input char.
836 */
837 int
838 zs_getc(arg)
839 void *arg;
840 {
841 register volatile struct zschan *zc = arg;
842 register int s, c, rr0;
843
844 s = splhigh();
845 /* Wait for a character to arrive. */
846 do {
847 rr0 = zc->zc_csr;
848 ZS_DELAY();
849 } while ((rr0 & ZSRR0_RX_READY) == 0);
850
851 c = zc->zc_data;
852 ZS_DELAY();
853 splx(s);
854
855 /*
856 * This is used by the kd driver to read scan codes,
857 * so don't translate '\r' ==> '\n' here...
858 */
859 return (c);
860 }
861
862 /*
863 * Polled output char.
864 */
865 void
866 zs_putc(arg, c)
867 void *arg;
868 int c;
869 {
870 register volatile struct zschan *zc = arg;
871 register int s, rr0;
872
873 s = splhigh();
874
875 /* Wait for transmitter to become ready. */
876 do {
877 rr0 = zc->zc_csr;
878 ZS_DELAY();
879 } while ((rr0 & ZSRR0_TX_READY) == 0);
880
881 /*
882 * Send the next character.
883 * Now you'd think that this could be followed by a ZS_DELAY()
884 * just like all the other chip accesses, but it turns out that
885 * the `transmit-ready' interrupt isn't de-asserted until
886 * some period of time after the register write completes
887 * (more than a couple instructions). So to avoid stray
888 * interrupts we put in the 2us delay regardless of cpu model.
889 */
890 zc->zc_data = c;
891 delay(2);
892
893 splx(s);
894 }
895
896 /*****************************************************************/
897
898 static void zscninit __P((struct consdev *));
899 static int zscngetc __P((dev_t));
900 static void zscnputc __P((dev_t, int));
901 static void zscnpollc __P((dev_t, int));
902 /*
903 * Console table shared by ttya, ttyb
904 */
905 struct consdev consdev_zs = {
906 nullcnprobe,
907 zscninit,
908 zscngetc,
909 zscnputc,
910 zscnpollc,
911 NULL,
912 };
913
914 static void
915 zscninit(cn)
916 struct consdev *cn;
917 {
918 }
919
920 /*
921 * Polled console input putchar.
922 */
923 static int
924 zscngetc(dev)
925 dev_t dev;
926 {
927 return (zs_getc(zs_conschan));
928 }
929
930 /*
931 * Polled console output putchar.
932 */
933 static void
934 zscnputc(dev, c)
935 dev_t dev;
936 int c;
937 {
938 zs_putc(zs_conschan, c);
939 }
940
941 int swallow_zsintrs;
942
943 static void
944 zscnpollc(dev, on)
945 dev_t dev;
946 int on;
947 {
948 /*
949 * Need to tell zs driver to acknowledge all interrupts or we get
950 * annoying spurious interrupt messages. This is because mucking
951 * with spl() levels during polling does not prevent interrupts from
952 * being generated.
953 */
954
955 if (on) swallow_zsintrs++;
956 else swallow_zsintrs--;
957 }
958