zs.c revision 1.21 1 /* $NetBSD: zs.c,v 1.21 2000/06/04 19:15:05 cgd Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/openfirm.h>
63 #include <machine/bsd_openprom.h>
64 #include <machine/conf.h>
65 #include <machine/cpu.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72 #include <ddb/db_output.h>
73
74 #include <sparc64/sparc64/vaddrs.h>
75 #include <sparc64/dev/cons.h>
76
77 #include "kbd.h" /* NKBD */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92 int zs_major = 12;
93
94 /*
95 * The Sun provides a 4.9152 MHz clock to the ZS chips.
96 */
97 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
98
99 #define ZS_DELAY()
100
101 /* The layout of this is hardware-dependent (padding, order). */
102 struct zschan {
103 volatile u_char zc_csr; /* ctrl,status, and indirect access */
104 u_char zc_xxx0;
105 volatile u_char zc_data; /* data */
106 u_char zc_xxx1;
107 };
108 struct zsdevice {
109 /* Yes, they are backwards. */
110 struct zschan zs_chan_b;
111 struct zschan zs_chan_a;
112 };
113
114 /* ZS channel used as the console device (if any) */
115 void *zs_conschan_get, *zs_conschan_put;
116
117 /* Saved PROM mappings */
118 static struct zsdevice *zsaddr[NZS];
119
120 static u_char zs_init_reg[16] = {
121 0, /* 0: CMD (reset, etc.) */
122 0, /* 1: No interrupts yet. */
123 0, /* 2: IVECT */
124 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
125 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
126 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
127 0, /* 6: TXSYNC/SYNCLO */
128 0, /* 7: RXSYNC/SYNCHI */
129 0, /* 8: alias for data port */
130 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
131 0, /*10: Misc. TX/RX control bits */
132 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
133 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
134 0, /*13: BAUDHI (default=9600) */
135 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
136 ZSWR15_BREAK_IE,
137 };
138
139 /* Console ops */
140 static int zscngetc __P((dev_t));
141 static void zscnputc __P((dev_t, int));
142 static void zscnpollc __P((dev_t, int));
143
144 struct consdev zs_consdev = {
145 NULL,
146 NULL,
147 zscngetc,
148 zscnputc,
149 zscnpollc,
150 NULL,
151 };
152
153
154 /****************************************************************
155 * Autoconfig
156 ****************************************************************/
157
158 /* Definition of the driver for autoconfig. */
159 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
160 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
161
162 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
163 static int zs_print __P((void *, const char *name));
164
165 /* Do we really need this ? */
166 struct cfattach zs_ca = {
167 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
168 };
169
170 struct cfattach zs_mainbus_ca = {
171 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
172 };
173
174 extern struct cfdriver zs_cd;
175 extern int stdinnode;
176 extern int fbnode;
177
178 /* Interrupt handlers. */
179 static int zshard __P((void *));
180 static int zssoft __P((void *));
181 static struct intrhand levelsoft = { zssoft, 0, IPL_SOFTSERIAL };
182
183 static int zs_get_speed __P((struct zs_chanstate *));
184
185 /* Console device support */
186 static int zs_console_flags __P((int, int, int));
187
188 /* Power management hooks */
189 int zs_enable __P((struct zs_chanstate *));
190 void zs_disable __P((struct zs_chanstate *));
191
192 /*
193 * Is the zs chip present?
194 */
195 static int
196 zs_match_mainbus(parent, cf, aux)
197 struct device *parent;
198 struct cfdata *cf;
199 void *aux;
200 {
201 struct sbus_attach_args *sa = aux;
202
203 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
204 return (0);
205
206 return (1);
207 }
208
209 static void
210 zs_attach_mainbus(parent, self, aux)
211 struct device *parent;
212 struct device *self;
213 void *aux;
214 {
215 struct zsc_softc *zsc = (void *) self;
216 struct sbus_attach_args *sa = aux;
217 int zs_unit = zsc->zsc_dev.dv_unit;
218
219 if (sa->sa_nintr == 0) {
220 printf(" no interrupt lines\n");
221 return;
222 }
223
224 /* Use the mapping setup by the Sun PROM. */
225 if (zsaddr[zs_unit] == NULL) {
226 /* Only map registers once. */
227 if (sa->sa_npromvaddrs) {
228 /*
229 * We're converting from a 32-bit pointer to a 64-bit
230 * pointer. Since the 32-bit entity is negative, but
231 * the kernel is still mapped into the lower 4GB
232 * range, this needs to be zero-extended.
233 *
234 * XXXXX If we map the kernel and devices into the
235 * high 4GB range, this needs to be changed to
236 * sign-extend the address.
237 */
238 zsaddr[zs_unit] =
239 (struct zsdevice *)
240 (uintptr_t)sa->sa_promvaddrs[0];
241 } else {
242 bus_space_handle_t kvaddr;
243
244 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
245 sa->sa_offset,
246 sa->sa_size,
247 BUS_SPACE_MAP_LINEAR,
248 0, &kvaddr) != 0) {
249 printf("%s @ sbus: cannot map registers\n",
250 self->dv_xname);
251 return;
252 }
253 zsaddr[zs_unit] = (struct zsdevice *)
254 (uintptr_t)kvaddr;
255 }
256 }
257 zsc->zsc_bustag = sa->sa_bustag;
258 zsc->zsc_dmatag = sa->sa_dmatag;
259 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
260 zsc->zsc_node = sa->sa_node;
261 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
262 }
263
264 /*
265 * Attach a found zs.
266 *
267 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
268 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
269 */
270 static void
271 zs_attach(zsc, zsd, pri)
272 struct zsc_softc *zsc;
273 struct zsdevice *zsd;
274 int pri;
275 {
276 struct zsc_attach_args zsc_args;
277 struct zs_chanstate *cs;
278 int s, channel;
279 static int didintr, prevpri;
280
281 if (zsd == NULL) {
282 printf("configuration incomplete\n");
283 return;
284 }
285
286 printf(" softpri %d\n", PIL_TTY);
287
288 /*
289 * Initialize software state for each channel.
290 */
291 for (channel = 0; channel < 2; channel++) {
292 struct zschan *zc;
293
294 zsc_args.channel = channel;
295 cs = &zsc->zsc_cs_store[channel];
296 zsc->zsc_cs[channel] = cs;
297
298 cs->cs_channel = channel;
299 cs->cs_private = NULL;
300 cs->cs_ops = &zsops_null;
301 cs->cs_brg_clk = PCLK / 16;
302
303 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
304
305 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
306 zsc->zsc_node,
307 channel);
308
309 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
310 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
311 zsc_args.consdev = &zs_consdev;
312 }
313
314 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
315 zs_conschan_get = zc;
316 }
317 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
318 zs_conschan_put = zc;
319 }
320 /* Childs need to set cn_dev, etc */
321
322 cs->cs_reg_csr = &zc->zc_csr;
323 cs->cs_reg_data = &zc->zc_data;
324
325 bcopy(zs_init_reg, cs->cs_creg, 16);
326 bcopy(zs_init_reg, cs->cs_preg, 16);
327
328 /* XXX: Consult PROM properties for this?! */
329 cs->cs_defspeed = zs_get_speed(cs);
330 cs->cs_defcflag = zs_def_cflag;
331
332 /* Make these correspond to cs_defcflag (-crtscts) */
333 cs->cs_rr0_dcd = ZSRR0_DCD;
334 cs->cs_rr0_cts = 0;
335 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
336 cs->cs_wr5_rts = 0;
337
338 /*
339 * Clear the master interrupt enable.
340 * The INTENA is common to both channels,
341 * so just do it on the A channel.
342 */
343 if (channel == 0) {
344 zs_write_reg(cs, 9, 0);
345 }
346
347 /*
348 * Look for a child driver for this channel.
349 * The child attach will setup the hardware.
350 */
351 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
352 /* No sub-driver. Just reset it. */
353 u_char reset = (channel == 0) ?
354 ZSWR9_A_RESET : ZSWR9_B_RESET;
355 s = splzs();
356 zs_write_reg(cs, 9, reset);
357 splx(s);
358 }
359 }
360
361 /*
362 * Now safe to install interrupt handlers. Note the arguments
363 * to the interrupt handlers aren't used. Note, we only do this
364 * once since both SCCs interrupt at the same level and vector.
365 */
366 if (!didintr) {
367 didintr = 1;
368 prevpri = pri;
369 bus_intr_establish(zsc->zsc_bustag, pri, 0, zshard, NULL);
370 intr_establish(PIL_TTY, &levelsoft);
371 } else if (pri != prevpri)
372 panic("broken zs interrupt scheme");
373
374 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
375 zsc->zsc_dev.dv_xname, "intr");
376
377 /*
378 * Set the master interrupt enable and interrupt vector.
379 * (common to both channels, do it on A)
380 */
381 cs = zsc->zsc_cs[0];
382 s = splhigh();
383 /* interrupt vector */
384 zs_write_reg(cs, 2, zs_init_reg[2]);
385 /* master interrupt control (enable) */
386 zs_write_reg(cs, 9, zs_init_reg[9]);
387 splx(s);
388
389 #if 0
390 /*
391 * XXX: L1A hack - We would like to be able to break into
392 * the debugger during the rest of autoconfiguration, so
393 * lower interrupts just enough to let zs interrupts in.
394 * This is done after both zs devices are attached.
395 */
396 if (zsc->zsc_promunit == 1) {
397 printf("zs1: enabling zs interrupts\n");
398 (void)splfd(); /* XXX: splzs - 1 */
399 }
400 #endif
401 }
402
403 static int
404 zs_print(aux, name)
405 void *aux;
406 const char *name;
407 {
408 struct zsc_attach_args *args = aux;
409
410 if (name != NULL)
411 printf("%s: ", name);
412
413 if (args->channel != -1)
414 printf(" channel %d", args->channel);
415
416 return (UNCONF);
417 }
418
419 static volatile int zssoftpending;
420
421 /*
422 * Our ZS chips all share a common, autovectored interrupt,
423 * so we have to look at all of them on each interrupt.
424 */
425 static int
426 zshard(arg)
427 void *arg;
428 {
429 struct zsc_softc *zsc;
430 int unit, rr3, rval, softreq;
431
432 rval = softreq = 0;
433 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
434 struct zs_chanstate *cs;
435
436 zsc = zs_cd.cd_devs[unit];
437 if (zsc == NULL)
438 continue;
439 rr3 = zsc_intr_hard(zsc);
440 /* Count up the interrupts. */
441 if (rr3) {
442 rval |= rr3;
443 zsc->zsc_intrcnt.ev_count++;
444 }
445 if ((cs = zsc->zsc_cs[0]) != NULL)
446 softreq |= zsc->zsc_cs[0]->cs_softreq;
447 if ((cs = zsc->zsc_cs[1]) != NULL)
448 softreq |= zsc->zsc_cs[1]->cs_softreq;
449 }
450
451 /* We are at splzs here, so no need to lock. */
452 if (softreq && (zssoftpending == 0)) {
453 zssoftpending = PIL_TTY;
454 send_softint(-1, PIL_TTY, &levelsoft);
455 }
456 return (rval);
457 }
458
459 /*
460 * Similar scheme as for zshard (look at all of them)
461 */
462 static int
463 zssoft(arg)
464 void *arg;
465 {
466 struct zsc_softc *zsc;
467 int s, unit;
468
469 /* This is not the only ISR on this IPL. */
470 if (zssoftpending == 0)
471 return (0);
472 zssoftpending = 0;
473
474 /* Make sure we call the tty layer at spltty. */
475 s = spltty();
476 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
477 zsc = zs_cd.cd_devs[unit];
478 if (zsc == NULL)
479 continue;
480 (void)zsc_intr_soft(zsc);
481 #ifdef TTY_DEBUG
482 {
483 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
484 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
485 if (zst0->zst_overflows || zst1->zst_overflows ) {
486 struct trapframe *frame = (struct trapframe *)arg;
487
488 printf("zs silo overflow from %p\n",
489 (long)frame->tf_pc);
490 }
491 }
492 #endif
493 }
494 splx(s);
495 return (1);
496 }
497
498
499 /*
500 * Compute the current baud rate given a ZS channel.
501 */
502 static int
503 zs_get_speed(cs)
504 struct zs_chanstate *cs;
505 {
506 int tconst;
507
508 tconst = zs_read_reg(cs, 12);
509 tconst |= zs_read_reg(cs, 13) << 8;
510 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
511 }
512
513 /*
514 * MD functions for setting the baud rate and control modes.
515 */
516 int
517 zs_set_speed(cs, bps)
518 struct zs_chanstate *cs;
519 int bps; /* bits per second */
520 {
521 int tconst, real_bps;
522
523 if (bps == 0)
524 return (0);
525
526 #ifdef DIAGNOSTIC
527 if (cs->cs_brg_clk == 0)
528 panic("zs_set_speed");
529 #endif
530
531 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
532 if (tconst < 0)
533 return (EINVAL);
534
535 /* Convert back to make sure we can do it. */
536 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
537
538 /* XXX - Allow some tolerance here? */
539 if (real_bps != bps)
540 return (EINVAL);
541
542 cs->cs_preg[12] = tconst;
543 cs->cs_preg[13] = tconst >> 8;
544
545 /* Caller will stuff the pending registers. */
546 return (0);
547 }
548
549 int
550 zs_set_modes(cs, cflag)
551 struct zs_chanstate *cs;
552 int cflag; /* bits per second */
553 {
554 int s;
555
556 /*
557 * Output hardware flow control on the chip is horrendous:
558 * if carrier detect drops, the receiver is disabled, and if
559 * CTS drops, the transmitter is stoped IN MID CHARACTER!
560 * Therefore, NEVER set the HFC bit, and instead use the
561 * status interrupt to detect CTS changes.
562 */
563 s = splzs();
564 cs->cs_rr0_pps = 0;
565 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
566 cs->cs_rr0_dcd = 0;
567 if ((cflag & MDMBUF) == 0)
568 cs->cs_rr0_pps = ZSRR0_DCD;
569 } else
570 cs->cs_rr0_dcd = ZSRR0_DCD;
571 if ((cflag & CRTSCTS) != 0) {
572 cs->cs_wr5_dtr = ZSWR5_DTR;
573 cs->cs_wr5_rts = ZSWR5_RTS;
574 cs->cs_rr0_cts = ZSRR0_CTS;
575 } else if ((cflag & CDTRCTS) != 0) {
576 cs->cs_wr5_dtr = 0;
577 cs->cs_wr5_rts = ZSWR5_DTR;
578 cs->cs_rr0_cts = ZSRR0_CTS;
579 } else if ((cflag & MDMBUF) != 0) {
580 cs->cs_wr5_dtr = 0;
581 cs->cs_wr5_rts = ZSWR5_DTR;
582 cs->cs_rr0_cts = ZSRR0_DCD;
583 } else {
584 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
585 cs->cs_wr5_rts = 0;
586 cs->cs_rr0_cts = 0;
587 }
588 splx(s);
589
590 /* Caller will stuff the pending registers. */
591 return (0);
592 }
593
594
595 /*
596 * Read or write the chip with suitable delays.
597 */
598
599 u_char
600 zs_read_reg(cs, reg)
601 struct zs_chanstate *cs;
602 u_char reg;
603 {
604 u_char val;
605
606 *cs->cs_reg_csr = reg;
607 ZS_DELAY();
608 val = *cs->cs_reg_csr;
609 ZS_DELAY();
610 return (val);
611 }
612
613 void
614 zs_write_reg(cs, reg, val)
615 struct zs_chanstate *cs;
616 u_char reg, val;
617 {
618 *cs->cs_reg_csr = reg;
619 ZS_DELAY();
620 *cs->cs_reg_csr = val;
621 ZS_DELAY();
622 }
623
624 u_char
625 zs_read_csr(cs)
626 struct zs_chanstate *cs;
627 {
628 u_char val;
629
630 val = *cs->cs_reg_csr;
631 ZS_DELAY();
632 return (val);
633 }
634
635 void zs_write_csr(cs, val)
636 struct zs_chanstate *cs;
637 u_char val;
638 {
639 *cs->cs_reg_csr = val;
640 ZS_DELAY();
641 }
642
643 u_char zs_read_data(cs)
644 struct zs_chanstate *cs;
645 {
646 u_char val;
647
648 val = *cs->cs_reg_data;
649 ZS_DELAY();
650 return (val);
651 }
652
653 void zs_write_data(cs, val)
654 struct zs_chanstate *cs;
655 u_char val;
656 {
657 *cs->cs_reg_data = val;
658 ZS_DELAY();
659 }
660
661 /****************************************************************
662 * Console support functions (Sun specific!)
663 * Note: this code is allowed to know about the layout of
664 * the chip registers, and uses that to keep things simple.
665 * XXX - I think I like the mvme167 code better. -gwr
666 ****************************************************************/
667
668 extern void Debugger __P((void));
669
670 /*
671 * Handle user request to enter kernel debugger.
672 */
673 void
674 zs_abort(cs)
675 struct zs_chanstate *cs;
676 {
677 volatile struct zschan *zc = zs_conschan_get;
678 int rr0;
679
680 /* Wait for end of break to avoid PROM abort. */
681 /* XXX - Limit the wait? */
682 do {
683 rr0 = zc->zc_csr;
684 ZS_DELAY();
685 } while (rr0 & ZSRR0_BREAK);
686
687 #if defined(KGDB)
688 zskgdb(cs);
689 #elif defined(DDB)
690 {
691 extern int db_active;
692
693 if (!db_active)
694 Debugger();
695 else
696 /* Debugger is probably hozed */
697 callrom();
698 }
699 #else
700 printf("stopping on keyboard abort\n");
701 callrom();
702 #endif
703 }
704
705
706 /*
707 * Polled input char.
708 */
709 int
710 zs_getc(arg)
711 void *arg;
712 {
713 volatile struct zschan *zc = arg;
714 int s, c, rr0;
715
716 s = splhigh();
717 /* Wait for a character to arrive. */
718 do {
719 rr0 = zc->zc_csr;
720 ZS_DELAY();
721 } while ((rr0 & ZSRR0_RX_READY) == 0);
722
723 c = zc->zc_data;
724 ZS_DELAY();
725 splx(s);
726
727 /*
728 * This is used by the kd driver to read scan codes,
729 * so don't translate '\r' ==> '\n' here...
730 */
731 return (c);
732 }
733
734 /*
735 * Polled output char.
736 */
737 void
738 zs_putc(arg, c)
739 void *arg;
740 int c;
741 {
742 volatile struct zschan *zc = arg;
743 int s, rr0;
744
745 s = splhigh();
746
747 /* Wait for transmitter to become ready. */
748 do {
749 rr0 = zc->zc_csr;
750 ZS_DELAY();
751 } while ((rr0 & ZSRR0_TX_READY) == 0);
752
753 /*
754 * Send the next character.
755 * Now you'd think that this could be followed by a ZS_DELAY()
756 * just like all the other chip accesses, but it turns out that
757 * the `transmit-ready' interrupt isn't de-asserted until
758 * some period of time after the register write completes
759 * (more than a couple instructions). So to avoid stray
760 * interrupts we put in the 2us delay regardless of cpu model.
761 */
762 zc->zc_data = c;
763 delay(2);
764
765 splx(s);
766 }
767
768 /*****************************************************************/
769
770
771
772
773 /*
774 * Polled console input putchar.
775 */
776 static int
777 zscngetc(dev)
778 dev_t dev;
779 {
780 return (zs_getc(zs_conschan_get));
781 }
782
783 /*
784 * Polled console output putchar.
785 */
786 static void
787 zscnputc(dev, c)
788 dev_t dev;
789 int c;
790 {
791 zs_putc(zs_conschan_put, c);
792 }
793
794 int swallow_zsintrs;
795
796 static void
797 zscnpollc(dev, on)
798 dev_t dev;
799 int on;
800 {
801 /*
802 * Need to tell zs driver to acknowledge all interrupts or we get
803 * annoying spurious interrupt messages. This is because mucking
804 * with spl() levels during polling does not prevent interrupts from
805 * being generated.
806 */
807
808 if (on) swallow_zsintrs++;
809 else swallow_zsintrs--;
810 }
811
812 int
813 zs_console_flags(promunit, node, channel)
814 int promunit;
815 int node;
816 int channel;
817 {
818 int cookie, flags = 0;
819 u_int chosen;
820 char buf[255];
821
822 /*
823 * We'll just to the OBP grovelling down here since that's
824 * the only type of firmware we support.
825 */
826 chosen = OF_finddevice("/chosen");
827
828 /* Default to channel 0 if there are no explicit prom args */
829 cookie = 0;
830 if (node == OF_instance_to_package(OF_stdin())) {
831 if (OF_getprop(chosen, "input-device", buf, sizeof(buf)) != -1) {
832
833 if (!strcmp("ttyb", buf))
834 cookie = 1;
835 }
836
837 if (channel == cookie)
838 flags |= ZS_HWFLAG_CONSOLE_INPUT;
839 }
840
841 if (node == OF_instance_to_package(OF_stdout())) {
842 if (OF_getprop(chosen, "output-device", buf, sizeof(buf)) != -1) {
843
844 if (!strcmp("ttyb", buf))
845 cookie = 1;
846 }
847
848 if (channel == cookie)
849 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
850 }
851
852 return (flags);
853 }
854
855