zs.c revision 1.25 1 /* $NetBSD: zs.c,v 1.25 2000/07/10 01:11:14 eeh Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/device.h>
53 #include <sys/file.h>
54 #include <sys/ioctl.h>
55 #include <sys/kernel.h>
56 #include <sys/proc.h>
57 #include <sys/tty.h>
58 #include <sys/time.h>
59 #include <sys/syslog.h>
60
61 #include <machine/autoconf.h>
62 #include <machine/openfirm.h>
63 #include <machine/bsd_openprom.h>
64 #include <machine/conf.h>
65 #include <machine/cpu.h>
66 #include <machine/eeprom.h>
67 #include <machine/psl.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72 #include <ddb/db_output.h>
73
74 #include <sparc64/dev/cons.h>
75
76 #include "kbd.h" /* NKBD */
77 #include "zs.h" /* NZS */
78
79 /* Make life easier for the initialized arrays here. */
80 #if NZS < 3
81 #undef NZS
82 #define NZS 3
83 #endif
84
85 /*
86 * Some warts needed by z8530tty.c -
87 * The default parity REALLY needs to be the same as the PROM uses,
88 * or you can not see messages done with printf during boot-up...
89 */
90 int zs_def_cflag = (CREAD | CS8 | HUPCL);
91 int zs_major = 12;
92
93 /*
94 * The Sun provides a 4.9152 MHz clock to the ZS chips.
95 */
96 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
97
98 #define ZS_DELAY()
99
100 /* The layout of this is hardware-dependent (padding, order). */
101 struct zschan {
102 volatile u_char zc_csr; /* ctrl,status, and indirect access */
103 u_char zc_xxx0;
104 volatile u_char zc_data; /* data */
105 u_char zc_xxx1;
106 };
107 struct zsdevice {
108 /* Yes, they are backwards. */
109 struct zschan zs_chan_b;
110 struct zschan zs_chan_a;
111 };
112
113 /* ZS channel used as the console device (if any) */
114 void *zs_conschan_get, *zs_conschan_put;
115
116 /* Saved PROM mappings */
117 static struct zsdevice *zsaddr[NZS];
118
119 static u_char zs_init_reg[16] = {
120 0, /* 0: CMD (reset, etc.) */
121 0, /* 1: No interrupts yet. */
122 0, /* 2: IVECT */
123 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
124 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
125 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
126 0, /* 6: TXSYNC/SYNCLO */
127 0, /* 7: RXSYNC/SYNCHI */
128 0, /* 8: alias for data port */
129 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
130 0, /*10: Misc. TX/RX control bits */
131 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
132 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
133 0, /*13: BAUDHI (default=9600) */
134 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
135 ZSWR15_BREAK_IE,
136 };
137
138 /* Console ops */
139 static int zscngetc __P((dev_t));
140 static void zscnputc __P((dev_t, int));
141 static void zscnpollc __P((dev_t, int));
142
143 struct consdev zs_consdev = {
144 NULL,
145 NULL,
146 zscngetc,
147 zscnputc,
148 zscnpollc,
149 NULL,
150 };
151
152
153 /****************************************************************
154 * Autoconfig
155 ****************************************************************/
156
157 /* Definition of the driver for autoconfig. */
158 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
159 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
160
161 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
162 static int zs_print __P((void *, const char *name));
163
164 /* Do we really need this ? */
165 struct cfattach zs_ca = {
166 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
167 };
168
169 struct cfattach zs_mainbus_ca = {
170 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
171 };
172
173 extern struct cfdriver zs_cd;
174 extern int stdinnode;
175 extern int fbnode;
176
177 /* Interrupt handlers. */
178 int zscheckintr __P((void *));
179 static int zshard __P((void *));
180 static int zssoft __P((void *));
181
182 static int zs_get_speed __P((struct zs_chanstate *));
183
184 /* Console device support */
185 static int zs_console_flags __P((int, int, int));
186
187 /* Power management hooks */
188 int zs_enable __P((struct zs_chanstate *));
189 void zs_disable __P((struct zs_chanstate *));
190
191 /*
192 * Is the zs chip present?
193 */
194 static int
195 zs_match_mainbus(parent, cf, aux)
196 struct device *parent;
197 struct cfdata *cf;
198 void *aux;
199 {
200 struct sbus_attach_args *sa = aux;
201
202 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
203 return (0);
204
205 return (1);
206 }
207
208 static void
209 zs_attach_mainbus(parent, self, aux)
210 struct device *parent;
211 struct device *self;
212 void *aux;
213 {
214 struct zsc_softc *zsc = (void *) self;
215 struct sbus_attach_args *sa = aux;
216 int zs_unit = zsc->zsc_dev.dv_unit;
217
218 if (sa->sa_nintr == 0) {
219 printf(" no interrupt lines\n");
220 return;
221 }
222
223 /* Use the mapping setup by the Sun PROM. */
224 if (zsaddr[zs_unit] == NULL) {
225 /* Only map registers once. */
226 if (sa->sa_npromvaddrs) {
227 /*
228 * We're converting from a 32-bit pointer to a 64-bit
229 * pointer. Since the 32-bit entity is negative, but
230 * the kernel is still mapped into the lower 4GB
231 * range, this needs to be zero-extended.
232 *
233 * XXXXX If we map the kernel and devices into the
234 * high 4GB range, this needs to be changed to
235 * sign-extend the address.
236 */
237 zsaddr[zs_unit] =
238 (struct zsdevice *)
239 (uintptr_t)sa->sa_promvaddrs[0];
240 } else {
241 bus_space_handle_t kvaddr;
242
243 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
244 sa->sa_offset,
245 sa->sa_size,
246 BUS_SPACE_MAP_LINEAR,
247 0, &kvaddr) != 0) {
248 printf("%s @ sbus: cannot map registers\n",
249 self->dv_xname);
250 return;
251 }
252 zsaddr[zs_unit] = (struct zsdevice *)
253 (uintptr_t)kvaddr;
254 }
255 }
256 zsc->zsc_bustag = sa->sa_bustag;
257 zsc->zsc_dmatag = sa->sa_dmatag;
258 zsc->zsc_promunit = getpropint(sa->sa_node, "slave", -2);
259 zsc->zsc_node = sa->sa_node;
260 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
261 }
262
263 /*
264 * Attach a found zs.
265 *
266 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
267 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
268 */
269 static void
270 zs_attach(zsc, zsd, pri)
271 struct zsc_softc *zsc;
272 struct zsdevice *zsd;
273 int pri;
274 {
275 struct zsc_attach_args zsc_args;
276 struct zs_chanstate *cs;
277 int s, channel, softpri = PIL_TTY;
278
279 if (zsd == NULL) {
280 printf("configuration incomplete\n");
281 return;
282 }
283
284 printf(" softpri %d\n", softpri);
285
286 /*
287 * Initialize software state for each channel.
288 */
289 for (channel = 0; channel < 2; channel++) {
290 struct zschan *zc;
291
292 zsc_args.channel = channel;
293 cs = &zsc->zsc_cs_store[channel];
294 zsc->zsc_cs[channel] = cs;
295
296 cs->cs_channel = channel;
297 cs->cs_private = NULL;
298 cs->cs_ops = &zsops_null;
299 cs->cs_brg_clk = PCLK / 16;
300
301 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
302
303 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
304 zsc->zsc_node,
305 channel);
306
307 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
308 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
309 zsc_args.consdev = &zs_consdev;
310 }
311
312 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
313 zs_conschan_get = zc;
314 }
315 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
316 zs_conschan_put = zc;
317 }
318 /* Childs need to set cn_dev, etc */
319
320 cs->cs_reg_csr = &zc->zc_csr;
321 cs->cs_reg_data = &zc->zc_data;
322
323 bcopy(zs_init_reg, cs->cs_creg, 16);
324 bcopy(zs_init_reg, cs->cs_preg, 16);
325
326 /* XXX: Consult PROM properties for this?! */
327 cs->cs_defspeed = zs_get_speed(cs);
328 cs->cs_defcflag = zs_def_cflag;
329
330 /* Make these correspond to cs_defcflag (-crtscts) */
331 cs->cs_rr0_dcd = ZSRR0_DCD;
332 cs->cs_rr0_cts = 0;
333 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
334 cs->cs_wr5_rts = 0;
335
336 /*
337 * Clear the master interrupt enable.
338 * The INTENA is common to both channels,
339 * so just do it on the A channel.
340 */
341 if (channel == 0) {
342 zs_write_reg(cs, 9, 0);
343 }
344
345 /*
346 * Look for a child driver for this channel.
347 * The child attach will setup the hardware.
348 */
349 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print)) {
350 /* No sub-driver. Just reset it. */
351 u_char reset = (channel == 0) ?
352 ZSWR9_A_RESET : ZSWR9_B_RESET;
353 s = splzs();
354 zs_write_reg(cs, 9, reset);
355 splx(s);
356 }
357 }
358
359 /*
360 * Now safe to install interrupt handlers. Note the arguments
361 * to the interrupt handlers aren't used. Note, we only do this
362 * once since both SCCs interrupt at the same level and vector.
363 */
364 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0, zshard, zsc);
365 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
366 panic("zsattach: could not establish soft interrupt\n");
367
368 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
369 zsc->zsc_dev.dv_xname, "intr");
370
371
372 /*
373 * Set the master interrupt enable and interrupt vector.
374 * (common to both channels, do it on A)
375 */
376 cs = zsc->zsc_cs[0];
377 s = splhigh();
378 /* interrupt vector */
379 zs_write_reg(cs, 2, zs_init_reg[2]);
380 /* master interrupt control (enable) */
381 zs_write_reg(cs, 9, zs_init_reg[9]);
382 splx(s);
383
384 #if 0
385 /*
386 * XXX: L1A hack - We would like to be able to break into
387 * the debugger during the rest of autoconfiguration, so
388 * lower interrupts just enough to let zs interrupts in.
389 * This is done after both zs devices are attached.
390 */
391 if (zsc->zsc_promunit == 1) {
392 printf("zs1: enabling zs interrupts\n");
393 (void)splfd(); /* XXX: splzs - 1 */
394 }
395 #endif
396 }
397
398 static int
399 zs_print(aux, name)
400 void *aux;
401 const char *name;
402 {
403 struct zsc_attach_args *args = aux;
404
405 if (name != NULL)
406 printf("%s: ", name);
407
408 if (args->channel != -1)
409 printf(" channel %d", args->channel);
410
411 return (UNCONF);
412 }
413
414 /* Deprecate this? */
415 static volatile int zssoftpending;
416
417 static int
418 zshard(arg)
419 void *arg;
420 {
421 struct zsc_softc *zsc = (struct zsc_softc *)arg;
422 int rr3, rval;
423
424 rval = 0;
425 while ((rr3 = zsc_intr_hard(zsc))) {
426 /* Count up the interrupts. */
427 rval |= rr3;
428 zsc->zsc_intrcnt.ev_count++;
429 }
430 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
431 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
432 zsc->zsc_softintr) {
433 zssoftpending = PIL_TTY;
434 softintr_schedule(zsc->zsc_softintr);
435 }
436 return (rval);
437 }
438
439 int
440 zscheckintr(arg)
441 void *arg;
442 {
443 struct zsc_softc *zsc;
444 int unit, rval;
445
446 rval = 0;
447 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
448
449 zsc = zs_cd.cd_devs[unit];
450 if (zsc == NULL)
451 continue;
452 rval = (zshard((void *)zsc) || rval);
453 }
454 return (rval);
455 }
456
457
458 /*
459 * We need this only for TTY_DEBUG purposes.
460 */
461 static int
462 zssoft(arg)
463 void *arg;
464 {
465 struct zsc_softc *zsc = (struct zsc_softc *)arg;
466 int s;
467
468 /* Make sure we call the tty layer at spltty. */
469 s = spltty();
470 zssoftpending = 0;
471 (void)zsc_intr_soft(zsc);
472 #ifdef TTY_DEBUG
473 {
474 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
475 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
476 if (zst0->zst_overflows || zst1->zst_overflows ) {
477 struct trapframe *frame = (struct trapframe *)arg;
478
479 printf("zs silo overflow from %p\n",
480 (long)frame->tf_pc);
481 }
482 }
483 #endif
484 splx(s);
485 return (1);
486 }
487
488
489 /*
490 * Compute the current baud rate given a ZS channel.
491 */
492 static int
493 zs_get_speed(cs)
494 struct zs_chanstate *cs;
495 {
496 int tconst;
497
498 tconst = zs_read_reg(cs, 12);
499 tconst |= zs_read_reg(cs, 13) << 8;
500 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
501 }
502
503 /*
504 * MD functions for setting the baud rate and control modes.
505 */
506 int
507 zs_set_speed(cs, bps)
508 struct zs_chanstate *cs;
509 int bps; /* bits per second */
510 {
511 int tconst, real_bps;
512
513 if (bps == 0)
514 return (0);
515
516 #ifdef DIAGNOSTIC
517 if (cs->cs_brg_clk == 0)
518 panic("zs_set_speed");
519 #endif
520
521 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
522 if (tconst < 0)
523 return (EINVAL);
524
525 /* Convert back to make sure we can do it. */
526 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
527
528 /* XXX - Allow some tolerance here? */
529 if (real_bps != bps)
530 return (EINVAL);
531
532 cs->cs_preg[12] = tconst;
533 cs->cs_preg[13] = tconst >> 8;
534
535 /* Caller will stuff the pending registers. */
536 return (0);
537 }
538
539 int
540 zs_set_modes(cs, cflag)
541 struct zs_chanstate *cs;
542 int cflag; /* bits per second */
543 {
544 int s;
545
546 /*
547 * Output hardware flow control on the chip is horrendous:
548 * if carrier detect drops, the receiver is disabled, and if
549 * CTS drops, the transmitter is stoped IN MID CHARACTER!
550 * Therefore, NEVER set the HFC bit, and instead use the
551 * status interrupt to detect CTS changes.
552 */
553 s = splzs();
554 cs->cs_rr0_pps = 0;
555 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
556 cs->cs_rr0_dcd = 0;
557 if ((cflag & MDMBUF) == 0)
558 cs->cs_rr0_pps = ZSRR0_DCD;
559 } else
560 cs->cs_rr0_dcd = ZSRR0_DCD;
561 if ((cflag & CRTSCTS) != 0) {
562 cs->cs_wr5_dtr = ZSWR5_DTR;
563 cs->cs_wr5_rts = ZSWR5_RTS;
564 cs->cs_rr0_cts = ZSRR0_CTS;
565 } else if ((cflag & CDTRCTS) != 0) {
566 cs->cs_wr5_dtr = 0;
567 cs->cs_wr5_rts = ZSWR5_DTR;
568 cs->cs_rr0_cts = ZSRR0_CTS;
569 } else if ((cflag & MDMBUF) != 0) {
570 cs->cs_wr5_dtr = 0;
571 cs->cs_wr5_rts = ZSWR5_DTR;
572 cs->cs_rr0_cts = ZSRR0_DCD;
573 } else {
574 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
575 cs->cs_wr5_rts = 0;
576 cs->cs_rr0_cts = 0;
577 }
578 splx(s);
579
580 /* Caller will stuff the pending registers. */
581 return (0);
582 }
583
584
585 /*
586 * Read or write the chip with suitable delays.
587 */
588
589 u_char
590 zs_read_reg(cs, reg)
591 struct zs_chanstate *cs;
592 u_char reg;
593 {
594 u_char val;
595
596 *cs->cs_reg_csr = reg;
597 ZS_DELAY();
598 val = *cs->cs_reg_csr;
599 ZS_DELAY();
600 return (val);
601 }
602
603 void
604 zs_write_reg(cs, reg, val)
605 struct zs_chanstate *cs;
606 u_char reg, val;
607 {
608 *cs->cs_reg_csr = reg;
609 ZS_DELAY();
610 *cs->cs_reg_csr = val;
611 ZS_DELAY();
612 }
613
614 u_char
615 zs_read_csr(cs)
616 struct zs_chanstate *cs;
617 {
618 u_char val;
619
620 val = *cs->cs_reg_csr;
621 ZS_DELAY();
622 return (val);
623 }
624
625 void zs_write_csr(cs, val)
626 struct zs_chanstate *cs;
627 u_char val;
628 {
629 *cs->cs_reg_csr = val;
630 ZS_DELAY();
631 }
632
633 u_char zs_read_data(cs)
634 struct zs_chanstate *cs;
635 {
636 u_char val;
637
638 val = *cs->cs_reg_data;
639 ZS_DELAY();
640 return (val);
641 }
642
643 void zs_write_data(cs, val)
644 struct zs_chanstate *cs;
645 u_char val;
646 {
647 *cs->cs_reg_data = val;
648 ZS_DELAY();
649 }
650
651 /****************************************************************
652 * Console support functions (Sun specific!)
653 * Note: this code is allowed to know about the layout of
654 * the chip registers, and uses that to keep things simple.
655 * XXX - I think I like the mvme167 code better. -gwr
656 ****************************************************************/
657
658 extern void Debugger __P((void));
659
660 /*
661 * Handle user request to enter kernel debugger.
662 */
663 void
664 zs_abort(cs)
665 struct zs_chanstate *cs;
666 {
667 volatile struct zschan *zc = zs_conschan_get;
668 int rr0;
669
670 /* Wait for end of break to avoid PROM abort. */
671 /* XXX - Limit the wait? */
672 do {
673 rr0 = zc->zc_csr;
674 ZS_DELAY();
675 } while (rr0 & ZSRR0_BREAK);
676
677 #if defined(KGDB)
678 zskgdb(cs);
679 #elif defined(DDB)
680 {
681 extern int db_active;
682
683 if (!db_active)
684 Debugger();
685 else
686 /* Debugger is probably hozed */
687 callrom();
688 }
689 #else
690 printf("stopping on keyboard abort\n");
691 callrom();
692 #endif
693 }
694
695
696 /*
697 * Polled input char.
698 */
699 int
700 zs_getc(arg)
701 void *arg;
702 {
703 volatile struct zschan *zc = arg;
704 int s, c, rr0;
705
706 s = splhigh();
707 /* Wait for a character to arrive. */
708 do {
709 rr0 = zc->zc_csr;
710 ZS_DELAY();
711 } while ((rr0 & ZSRR0_RX_READY) == 0);
712
713 c = zc->zc_data;
714 ZS_DELAY();
715 splx(s);
716
717 /*
718 * This is used by the kd driver to read scan codes,
719 * so don't translate '\r' ==> '\n' here...
720 */
721 return (c);
722 }
723
724 /*
725 * Polled output char.
726 */
727 void
728 zs_putc(arg, c)
729 void *arg;
730 int c;
731 {
732 volatile struct zschan *zc = arg;
733 int s, rr0;
734
735 s = splhigh();
736
737 /* Wait for transmitter to become ready. */
738 do {
739 rr0 = zc->zc_csr;
740 ZS_DELAY();
741 } while ((rr0 & ZSRR0_TX_READY) == 0);
742
743 /*
744 * Send the next character.
745 * Now you'd think that this could be followed by a ZS_DELAY()
746 * just like all the other chip accesses, but it turns out that
747 * the `transmit-ready' interrupt isn't de-asserted until
748 * some period of time after the register write completes
749 * (more than a couple instructions). So to avoid stray
750 * interrupts we put in the 2us delay regardless of cpu model.
751 */
752 zc->zc_data = c;
753 delay(2);
754
755 splx(s);
756 }
757
758 /*****************************************************************/
759
760
761
762
763 /*
764 * Polled console input putchar.
765 */
766 static int
767 zscngetc(dev)
768 dev_t dev;
769 {
770 return (zs_getc(zs_conschan_get));
771 }
772
773 /*
774 * Polled console output putchar.
775 */
776 static void
777 zscnputc(dev, c)
778 dev_t dev;
779 int c;
780 {
781 zs_putc(zs_conschan_put, c);
782 }
783
784 int swallow_zsintrs;
785
786 static void
787 zscnpollc(dev, on)
788 dev_t dev;
789 int on;
790 {
791 /*
792 * Need to tell zs driver to acknowledge all interrupts or we get
793 * annoying spurious interrupt messages. This is because mucking
794 * with spl() levels during polling does not prevent interrupts from
795 * being generated.
796 */
797
798 if (on) swallow_zsintrs++;
799 else swallow_zsintrs--;
800 }
801
802 int
803 zs_console_flags(promunit, node, channel)
804 int promunit;
805 int node;
806 int channel;
807 {
808 int cookie, flags = 0;
809 u_int chosen;
810 char buf[255];
811
812 /*
813 * We'll just to the OBP grovelling down here since that's
814 * the only type of firmware we support.
815 */
816 chosen = OF_finddevice("/chosen");
817
818 /* Default to channel 0 if there are no explicit prom args */
819 cookie = 0;
820 if (node == OF_instance_to_package(OF_stdin())) {
821 if (OF_getprop(chosen, "input-device", buf, sizeof(buf)) != -1) {
822
823 if (!strcmp("ttyb", buf))
824 cookie = 1;
825 }
826
827 if (channel == cookie)
828 flags |= ZS_HWFLAG_CONSOLE_INPUT;
829 }
830
831 if (node == OF_instance_to_package(OF_stdout())) {
832 if (OF_getprop(chosen, "output-device", buf, sizeof(buf)) != -1) {
833
834 if (!strcmp("ttyb", buf))
835 cookie = 1;
836 }
837
838 if (channel == cookie)
839 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
840 }
841
842 return (flags);
843 }
844
845