zs.c revision 1.34.4.1 1 /* $NetBSD: zs.c,v 1.34.4.1 2002/05/19 08:14:14 gehenna Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61
62 #include <machine/autoconf.h>
63 #include <machine/openfirm.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71 #include <dev/sun/kbd_ms_ttyvar.h>
72 #include <ddb/db_output.h>
73
74 #include <sparc64/dev/cons.h>
75
76 #include "kbd.h" /* NKBD */
77 #include "ms.h" /* NMS */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92
93 /*
94 * The Sun provides a 4.9152 MHz clock to the ZS chips.
95 */
96 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
97
98 #define ZS_DELAY()
99
100 /* The layout of this is hardware-dependent (padding, order). */
101 struct zschan {
102 volatile u_char zc_csr; /* ctrl,status, and indirect access */
103 u_char zc_xxx0;
104 volatile u_char zc_data; /* data */
105 u_char zc_xxx1;
106 };
107 struct zsdevice {
108 /* Yes, they are backwards. */
109 struct zschan zs_chan_b;
110 struct zschan zs_chan_a;
111 };
112
113 /* ZS channel used as the console device (if any) */
114 void *zs_conschan_get, *zs_conschan_put;
115
116 /* Saved PROM mappings */
117 static struct zsdevice *zsaddr[NZS];
118
119 static u_char zs_init_reg[16] = {
120 0, /* 0: CMD (reset, etc.) */
121 0, /* 1: No interrupts yet. */
122 0, /* 2: IVECT */
123 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
124 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
125 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
126 0, /* 6: TXSYNC/SYNCLO */
127 0, /* 7: RXSYNC/SYNCHI */
128 0, /* 8: alias for data port */
129 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
130 0, /*10: Misc. TX/RX control bits */
131 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
132 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
133 0, /*13: BAUDHI (default=9600) */
134 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
135 ZSWR15_BREAK_IE,
136 };
137
138 /* Console ops */
139 static int zscngetc __P((dev_t));
140 static void zscnputc __P((dev_t, int));
141 static void zscnpollc __P((dev_t, int));
142
143 struct consdev zs_consdev = {
144 NULL,
145 NULL,
146 zscngetc,
147 zscnputc,
148 zscnpollc,
149 NULL,
150 };
151
152
153 /****************************************************************
154 * Autoconfig
155 ****************************************************************/
156
157 /* Definition of the driver for autoconfig. */
158 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
159 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
160
161 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
162 static int zs_print __P((void *, const char *name));
163
164 /* Do we really need this ? */
165 struct cfattach zs_ca = {
166 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
167 };
168
169 struct cfattach zs_mainbus_ca = {
170 sizeof(struct zsc_softc), zs_match_mainbus, zs_attach_mainbus
171 };
172
173 extern struct cfdriver zs_cd;
174 extern int stdinnode;
175 extern int fbnode;
176
177 /* Interrupt handlers. */
178 int zscheckintr __P((void *));
179 static int zshard __P((void *));
180 static void zssoft __P((void *));
181
182 static int zs_get_speed __P((struct zs_chanstate *));
183
184 /* Console device support */
185 static int zs_console_flags __P((int, int, int));
186
187 /* Power management hooks */
188 int zs_enable __P((struct zs_chanstate *));
189 void zs_disable __P((struct zs_chanstate *));
190
191 /*
192 * Is the zs chip present?
193 */
194 static int
195 zs_match_mainbus(parent, cf, aux)
196 struct device *parent;
197 struct cfdata *cf;
198 void *aux;
199 {
200 struct sbus_attach_args *sa = aux;
201
202 if (strcmp(cf->cf_driver->cd_name, sa->sa_name) != 0)
203 return (0);
204
205 return (1);
206 }
207
208 static void
209 zs_attach_mainbus(parent, self, aux)
210 struct device *parent;
211 struct device *self;
212 void *aux;
213 {
214 struct zsc_softc *zsc = (void *) self;
215 struct sbus_attach_args *sa = aux;
216 bus_space_handle_t bh;
217 int zs_unit = zsc->zsc_dev.dv_unit;
218
219 if (sa->sa_nintr == 0) {
220 printf(" no interrupt lines\n");
221 return;
222 }
223
224 /* Use the mapping setup by the Sun PROM if possible. */
225 if (zsaddr[zs_unit] == NULL) {
226 /* Only map registers once. */
227 if (sa->sa_npromvaddrs) {
228 /*
229 * We're converting from a 32-bit pointer to a 64-bit
230 * pointer. Since the 32-bit entity is negative, but
231 * the kernel is still mapped into the lower 4GB
232 * range, this needs to be zero-extended.
233 *
234 * XXXXX If we map the kernel and devices into the
235 * high 4GB range, this needs to be changed to
236 * sign-extend the address.
237 */
238 sparc_promaddr_to_handle(sa->sa_bustag,
239 sa->sa_promvaddrs[0], &bh);
240
241 } else {
242
243 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
244 sa->sa_offset,
245 sa->sa_size,
246 BUS_SPACE_MAP_LINEAR,
247 &bh) != 0) {
248 printf("%s @ sbus: cannot map registers\n",
249 self->dv_xname);
250 return;
251 }
252 }
253 zsaddr[zs_unit] = (struct zsdevice *)
254 bus_space_vaddr(sa->sa_bustag, bh);
255 }
256 zsc->zsc_bustag = sa->sa_bustag;
257 zsc->zsc_dmatag = sa->sa_dmatag;
258 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
259 zsc->zsc_node = sa->sa_node;
260 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
261 }
262
263 /*
264 * Attach a found zs.
265 *
266 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
267 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
268 */
269 static void
270 zs_attach(zsc, zsd, pri)
271 struct zsc_softc *zsc;
272 struct zsdevice *zsd;
273 int pri;
274 {
275 struct zsc_attach_args zsc_args;
276 struct zs_chanstate *cs;
277 int s, channel, softpri = PIL_TTY;
278
279 if (zsd == NULL) {
280 printf("configuration incomplete\n");
281 return;
282 }
283
284 printf(" softpri %d\n", softpri);
285
286 /*
287 * Initialize software state for each channel.
288 */
289 for (channel = 0; channel < 2; channel++) {
290 struct zschan *zc;
291 struct device *child;
292 extern struct cfdriver zstty_cd; /* in ioconf.c */
293
294 zsc_args.channel = channel;
295 cs = &zsc->zsc_cs_store[channel];
296 zsc->zsc_cs[channel] = cs;
297
298 cs->cs_channel = channel;
299 cs->cs_private = NULL;
300 cs->cs_ops = &zsops_null;
301 cs->cs_brg_clk = PCLK / 16;
302
303 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
304
305 zsc_args.consdev = NULL;
306 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
307 zsc->zsc_node,
308 channel);
309
310 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
311 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
312 zsc_args.consdev = &zs_consdev;
313 }
314
315 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
316 zs_conschan_get = zc;
317 }
318 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
319 zs_conschan_put = zc;
320 }
321
322 /* Children need to set cn_dev, etc */
323 cs->cs_reg_csr = &zc->zc_csr;
324 cs->cs_reg_data = &zc->zc_data;
325
326 bcopy(zs_init_reg, cs->cs_creg, 16);
327 bcopy(zs_init_reg, cs->cs_preg, 16);
328
329 /* XXX: Consult PROM properties for this?! */
330 cs->cs_defspeed = zs_get_speed(cs);
331 cs->cs_defcflag = zs_def_cflag;
332
333 /* Make these correspond to cs_defcflag (-crtscts) */
334 cs->cs_rr0_dcd = ZSRR0_DCD;
335 cs->cs_rr0_cts = 0;
336 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
337 cs->cs_wr5_rts = 0;
338
339 /*
340 * Clear the master interrupt enable.
341 * The INTENA is common to both channels,
342 * so just do it on the A channel.
343 */
344 if (channel == 0) {
345 zs_write_reg(cs, 9, 0);
346 }
347
348 /*
349 * Look for a child driver for this channel.
350 * The child attach will setup the hardware.
351 */
352 if (!(child =
353 config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print))) {
354 /* No sub-driver. Just reset it. */
355 u_char reset = (channel == 0) ?
356 ZSWR9_A_RESET : ZSWR9_B_RESET;
357 s = splzs();
358 zs_write_reg(cs, 9, reset);
359 splx(s);
360 }
361 #if (NKBD > 0) || (NMS > 0)
362 /*
363 * If this was a zstty it has a keyboard
364 * property on it we need to attach the
365 * sunkbd and sunms line disciplines.
366 */
367 if (child
368 && (child->dv_cfdata->cf_driver == &zstty_cd)
369 && (PROM_getproplen(zsc->zsc_node, "keyboard") == 0)) {
370 struct kbd_ms_tty_attach_args kma;
371 struct zstty_softc {
372 /* The following are the only fields we need here */
373 struct device zst_dev;
374 struct tty *zst_tty;
375 struct zs_chanstate *zst_cs;
376 } *zst = (struct zstty_softc *)child;
377 struct tty *tp;
378
379 kma.kmta_tp = tp = zst->zst_tty;
380 kma.kmta_dev = tp->t_dev;
381 kma.kmta_consdev = zsc_args.consdev;
382
383 /* Attach 'em if we got 'em. */
384 #if (NKBD > 0)
385 if (channel == 0) {
386 kma.kmta_name = "keyboard";
387 config_found(child, (void *)&kma, NULL);
388 }
389 #endif
390 #if (NMS > 0)
391 if (channel == 1) {
392 kma.kmta_name = "mouse";
393 config_found(child, (void *)&kma, NULL);
394 }
395 #endif
396 }
397 #endif
398 }
399
400 /*
401 * Now safe to install interrupt handlers. Note the arguments
402 * to the interrupt handlers aren't used. Note, we only do this
403 * once since both SCCs interrupt at the same level and vector.
404 */
405 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, 0, zshard, zsc);
406 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
407 panic("zsattach: could not establish soft interrupt\n");
408
409 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
410 zsc->zsc_dev.dv_xname, "intr");
411
412
413 /*
414 * Set the master interrupt enable and interrupt vector.
415 * (common to both channels, do it on A)
416 */
417 cs = zsc->zsc_cs[0];
418 s = splhigh();
419 /* interrupt vector */
420 zs_write_reg(cs, 2, zs_init_reg[2]);
421 /* master interrupt control (enable) */
422 zs_write_reg(cs, 9, zs_init_reg[9]);
423 splx(s);
424
425 }
426
427 static int
428 zs_print(aux, name)
429 void *aux;
430 const char *name;
431 {
432 struct zsc_attach_args *args = aux;
433
434 if (name != NULL)
435 printf("%s: ", name);
436
437 if (args->channel != -1)
438 printf(" channel %d", args->channel);
439
440 return (UNCONF);
441 }
442
443 /* Deprecate this? */
444 static volatile int zssoftpending;
445
446 static int
447 zshard(arg)
448 void *arg;
449 {
450 struct zsc_softc *zsc = (struct zsc_softc *)arg;
451 int rr3, rval;
452
453 rval = 0;
454 while ((rr3 = zsc_intr_hard(zsc))) {
455 /* Count up the interrupts. */
456 rval |= rr3;
457 zsc->zsc_intrcnt.ev_count++;
458 }
459 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
460 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
461 zsc->zsc_softintr) {
462 zssoftpending = PIL_TTY;
463 softintr_schedule(zsc->zsc_softintr);
464 }
465 return (rval);
466 }
467
468 int
469 zscheckintr(arg)
470 void *arg;
471 {
472 struct zsc_softc *zsc;
473 int unit, rval;
474
475 rval = 0;
476 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
477
478 zsc = zs_cd.cd_devs[unit];
479 if (zsc == NULL)
480 continue;
481 rval = (zshard((void *)zsc) || rval);
482 }
483 return (rval);
484 }
485
486
487 /*
488 * We need this only for TTY_DEBUG purposes.
489 */
490 static void
491 zssoft(arg)
492 void *arg;
493 {
494 struct zsc_softc *zsc = (struct zsc_softc *)arg;
495 int s;
496
497 /* Make sure we call the tty layer at spltty. */
498 s = spltty();
499 zssoftpending = 0;
500 (void)zsc_intr_soft(zsc);
501 #ifdef TTY_DEBUG
502 {
503 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
504 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
505 if (zst0->zst_overflows || zst1->zst_overflows ) {
506 struct trapframe *frame = (struct trapframe *)arg;
507
508 printf("zs silo overflow from %p\n",
509 (long)frame->tf_pc);
510 }
511 }
512 #endif
513 splx(s);
514 }
515
516
517 /*
518 * Compute the current baud rate given a ZS channel.
519 */
520 static int
521 zs_get_speed(cs)
522 struct zs_chanstate *cs;
523 {
524 int tconst;
525
526 tconst = zs_read_reg(cs, 12);
527 tconst |= zs_read_reg(cs, 13) << 8;
528 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
529 }
530
531 /*
532 * MD functions for setting the baud rate and control modes.
533 */
534 int
535 zs_set_speed(cs, bps)
536 struct zs_chanstate *cs;
537 int bps; /* bits per second */
538 {
539 int tconst, real_bps;
540
541 if (bps == 0)
542 return (0);
543
544 #ifdef DIAGNOSTIC
545 if (cs->cs_brg_clk == 0)
546 panic("zs_set_speed");
547 #endif
548
549 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
550 if (tconst < 0)
551 return (EINVAL);
552
553 /* Convert back to make sure we can do it. */
554 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
555
556 /* XXX - Allow some tolerance here? */
557 if (real_bps != bps)
558 return (EINVAL);
559
560 cs->cs_preg[12] = tconst;
561 cs->cs_preg[13] = tconst >> 8;
562
563 /* Caller will stuff the pending registers. */
564 return (0);
565 }
566
567 int
568 zs_set_modes(cs, cflag)
569 struct zs_chanstate *cs;
570 int cflag; /* bits per second */
571 {
572 int s;
573
574 /*
575 * Output hardware flow control on the chip is horrendous:
576 * if carrier detect drops, the receiver is disabled, and if
577 * CTS drops, the transmitter is stoped IN MID CHARACTER!
578 * Therefore, NEVER set the HFC bit, and instead use the
579 * status interrupt to detect CTS changes.
580 */
581 s = splzs();
582 cs->cs_rr0_pps = 0;
583 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
584 cs->cs_rr0_dcd = 0;
585 if ((cflag & MDMBUF) == 0)
586 cs->cs_rr0_pps = ZSRR0_DCD;
587 } else
588 cs->cs_rr0_dcd = ZSRR0_DCD;
589 if ((cflag & CRTSCTS) != 0) {
590 cs->cs_wr5_dtr = ZSWR5_DTR;
591 cs->cs_wr5_rts = ZSWR5_RTS;
592 cs->cs_rr0_cts = ZSRR0_CTS;
593 } else if ((cflag & CDTRCTS) != 0) {
594 cs->cs_wr5_dtr = 0;
595 cs->cs_wr5_rts = ZSWR5_DTR;
596 cs->cs_rr0_cts = ZSRR0_CTS;
597 } else if ((cflag & MDMBUF) != 0) {
598 cs->cs_wr5_dtr = 0;
599 cs->cs_wr5_rts = ZSWR5_DTR;
600 cs->cs_rr0_cts = ZSRR0_DCD;
601 } else {
602 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
603 cs->cs_wr5_rts = 0;
604 cs->cs_rr0_cts = 0;
605 }
606 splx(s);
607
608 /* Caller will stuff the pending registers. */
609 return (0);
610 }
611
612
613 /*
614 * Read or write the chip with suitable delays.
615 */
616
617 u_char
618 zs_read_reg(cs, reg)
619 struct zs_chanstate *cs;
620 u_char reg;
621 {
622 u_char val;
623
624 *cs->cs_reg_csr = reg;
625 ZS_DELAY();
626 val = *cs->cs_reg_csr;
627 ZS_DELAY();
628 return (val);
629 }
630
631 void
632 zs_write_reg(cs, reg, val)
633 struct zs_chanstate *cs;
634 u_char reg, val;
635 {
636 *cs->cs_reg_csr = reg;
637 ZS_DELAY();
638 *cs->cs_reg_csr = val;
639 ZS_DELAY();
640 }
641
642 u_char
643 zs_read_csr(cs)
644 struct zs_chanstate *cs;
645 {
646 u_char val;
647
648 val = *cs->cs_reg_csr;
649 ZS_DELAY();
650 return (val);
651 }
652
653 void zs_write_csr(cs, val)
654 struct zs_chanstate *cs;
655 u_char val;
656 {
657 *cs->cs_reg_csr = val;
658 ZS_DELAY();
659 }
660
661 u_char zs_read_data(cs)
662 struct zs_chanstate *cs;
663 {
664 u_char val;
665
666 val = *cs->cs_reg_data;
667 ZS_DELAY();
668 return (val);
669 }
670
671 void zs_write_data(cs, val)
672 struct zs_chanstate *cs;
673 u_char val;
674 {
675 *cs->cs_reg_data = val;
676 ZS_DELAY();
677 }
678
679 /****************************************************************
680 * Console support functions (Sun specific!)
681 * Note: this code is allowed to know about the layout of
682 * the chip registers, and uses that to keep things simple.
683 * XXX - I think I like the mvme167 code better. -gwr
684 ****************************************************************/
685
686 extern void Debugger __P((void));
687
688 /*
689 * Handle user request to enter kernel debugger.
690 */
691 void
692 zs_abort(cs)
693 struct zs_chanstate *cs;
694 {
695 volatile struct zschan *zc = zs_conschan_get;
696 int rr0;
697
698 /* Wait for end of break to avoid PROM abort. */
699 /* XXX - Limit the wait? */
700 do {
701 rr0 = zc->zc_csr;
702 ZS_DELAY();
703 } while (rr0 & ZSRR0_BREAK);
704
705 #if defined(KGDB)
706 zskgdb(cs);
707 #elif defined(DDB)
708 {
709 extern int db_active;
710
711 if (!db_active)
712 Debugger();
713 else
714 /* Debugger is probably hozed */
715 callrom();
716 }
717 #else
718 printf("stopping on keyboard abort\n");
719 callrom();
720 #endif
721 }
722
723
724 /*
725 * Polled input char.
726 */
727 int
728 zs_getc(arg)
729 void *arg;
730 {
731 volatile struct zschan *zc = arg;
732 int s, c, rr0;
733
734 s = splhigh();
735 /* Wait for a character to arrive. */
736 do {
737 rr0 = zc->zc_csr;
738 ZS_DELAY();
739 } while ((rr0 & ZSRR0_RX_READY) == 0);
740
741 c = zc->zc_data;
742 ZS_DELAY();
743 splx(s);
744
745 /*
746 * This is used by the kd driver to read scan codes,
747 * so don't translate '\r' ==> '\n' here...
748 */
749 return (c);
750 }
751
752 /*
753 * Polled output char.
754 */
755 void
756 zs_putc(arg, c)
757 void *arg;
758 int c;
759 {
760 volatile struct zschan *zc = arg;
761 int s, rr0;
762
763 s = splhigh();
764
765 /* Wait for transmitter to become ready. */
766 do {
767 rr0 = zc->zc_csr;
768 ZS_DELAY();
769 } while ((rr0 & ZSRR0_TX_READY) == 0);
770
771 /*
772 * Send the next character.
773 * Now you'd think that this could be followed by a ZS_DELAY()
774 * just like all the other chip accesses, but it turns out that
775 * the `transmit-ready' interrupt isn't de-asserted until
776 * some period of time after the register write completes
777 * (more than a couple instructions). So to avoid stray
778 * interrupts we put in the 2us delay regardless of cpu model.
779 */
780 zc->zc_data = c;
781 delay(2);
782
783 splx(s);
784 }
785
786 /*****************************************************************/
787
788
789
790
791 /*
792 * Polled console input putchar.
793 */
794 static int
795 zscngetc(dev)
796 dev_t dev;
797 {
798 return (zs_getc(zs_conschan_get));
799 }
800
801 /*
802 * Polled console output putchar.
803 */
804 static void
805 zscnputc(dev, c)
806 dev_t dev;
807 int c;
808 {
809 zs_putc(zs_conschan_put, c);
810 }
811
812 int swallow_zsintrs;
813
814 static void
815 zscnpollc(dev, on)
816 dev_t dev;
817 int on;
818 {
819 /*
820 * Need to tell zs driver to acknowledge all interrupts or we get
821 * annoying spurious interrupt messages. This is because mucking
822 * with spl() levels during polling does not prevent interrupts from
823 * being generated.
824 */
825
826 if (on) swallow_zsintrs++;
827 else swallow_zsintrs--;
828 }
829
830 int
831 zs_console_flags(promunit, node, channel)
832 int promunit;
833 int node;
834 int channel;
835 {
836 int cookie, flags = 0;
837 u_int chosen;
838 char buf[255];
839
840 /*
841 * We'll just to the OBP grovelling down here since that's
842 * the only type of firmware we support.
843 */
844 chosen = OF_finddevice("/chosen");
845
846 /* Default to channel 0 if there are no explicit prom args */
847 cookie = 0;
848 if (node == OF_instance_to_package(OF_stdin())) {
849 if (OF_getprop(chosen, "input-device", buf, sizeof(buf)) != -1) {
850
851 if (!strcmp("ttyb", buf))
852 cookie = 1;
853 }
854
855 if (channel == cookie)
856 flags |= ZS_HWFLAG_CONSOLE_INPUT;
857 }
858
859 if (node == OF_instance_to_package(OF_stdout())) {
860 if (OF_getprop(chosen, "output-device", buf, sizeof(buf)) != -1) {
861
862 if (!strcmp("ttyb", buf))
863 cookie = 1;
864 }
865
866 if (channel == cookie)
867 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
868 }
869
870 return (flags);
871 }
872
873