zs.c revision 1.46 1 /* $NetBSD: zs.c,v 1.46 2003/01/28 12:35:36 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include "opt_ddb.h"
48 #include "opt_kgdb.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/conf.h>
53 #include <sys/device.h>
54 #include <sys/file.h>
55 #include <sys/ioctl.h>
56 #include <sys/kernel.h>
57 #include <sys/proc.h>
58 #include <sys/tty.h>
59 #include <sys/time.h>
60 #include <sys/syslog.h>
61
62 #include <machine/autoconf.h>
63 #include <machine/openfirm.h>
64 #include <machine/cpu.h>
65 #include <machine/eeprom.h>
66 #include <machine/psl.h>
67 #include <machine/z8530var.h>
68
69 #include <dev/cons.h>
70 #include <dev/ic/z8530reg.h>
71 #include <dev/sun/kbd_ms_ttyvar.h>
72 #include <ddb/db_output.h>
73
74 #include <sparc64/dev/cons.h>
75
76 #include "kbd.h" /* NKBD */
77 #include "ms.h" /* NMS */
78 #include "zs.h" /* NZS */
79
80 /* Make life easier for the initialized arrays here. */
81 #if NZS < 3
82 #undef NZS
83 #define NZS 3
84 #endif
85
86 /*
87 * Some warts needed by z8530tty.c -
88 * The default parity REALLY needs to be the same as the PROM uses,
89 * or you can not see messages done with printf during boot-up...
90 */
91 int zs_def_cflag = (CREAD | CS8 | HUPCL);
92
93 /*
94 * The Sun provides a 4.9152 MHz clock to the ZS chips.
95 */
96 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
97
98 #define ZS_DELAY()
99
100 /* The layout of this is hardware-dependent (padding, order). */
101 struct zschan {
102 volatile u_char zc_csr; /* ctrl,status, and indirect access */
103 u_char zc_xxx0;
104 volatile u_char zc_data; /* data */
105 u_char zc_xxx1;
106 };
107 struct zsdevice {
108 /* Yes, they are backwards. */
109 struct zschan zs_chan_b;
110 struct zschan zs_chan_a;
111 };
112
113 /* ZS channel used as the console device (if any) */
114 void *zs_conschan_get, *zs_conschan_put;
115
116 /* Saved PROM mappings */
117 static struct zsdevice *zsaddr[NZS];
118
119 static u_char zs_init_reg[16] = {
120 0, /* 0: CMD (reset, etc.) */
121 0, /* 1: No interrupts yet. */
122 0, /* 2: IVECT */
123 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
124 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
125 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
126 0, /* 6: TXSYNC/SYNCLO */
127 0, /* 7: RXSYNC/SYNCHI */
128 0, /* 8: alias for data port */
129 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
130 0, /*10: Misc. TX/RX control bits */
131 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
132 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
133 0, /*13: BAUDHI (default=9600) */
134 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
135 ZSWR15_BREAK_IE,
136 };
137
138 /* Console ops */
139 static int zscngetc __P((dev_t));
140 static void zscnputc __P((dev_t, int));
141 static void zscnpollc __P((dev_t, int));
142
143 struct consdev zs_consdev = {
144 NULL,
145 NULL,
146 zscngetc,
147 zscnputc,
148 zscnpollc,
149 NULL,
150 };
151
152
153 /****************************************************************
154 * Autoconfig
155 ****************************************************************/
156
157 /* Definition of the driver for autoconfig. */
158 static int zs_match_mainbus __P((struct device *, struct cfdata *, void *));
159 static void zs_attach_mainbus __P((struct device *, struct device *, void *));
160
161 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
162 static int zs_print __P((void *, const char *name));
163
164 /* Do we really need this ? */
165 CFATTACH_DECL(zs, sizeof(struct zsc_softc),
166 zs_match_mainbus, zs_attach_mainbus, NULL, NULL);
167
168 CFATTACH_DECL(zs_mainbus, sizeof(struct zsc_softc),
169 zs_match_mainbus, zs_attach_mainbus, NULL, NULL);
170
171 extern struct cfdriver zs_cd;
172 extern int stdinnode;
173 extern int fbnode;
174
175 /* Interrupt handlers. */
176 int zscheckintr __P((void *));
177 static int zshard __P((void *));
178 static void zssoft __P((void *));
179
180 static int zs_get_speed __P((struct zs_chanstate *));
181
182 /* Console device support */
183 static int zs_console_flags __P((int, int, int));
184
185 /* Power management hooks */
186 int zs_enable __P((struct zs_chanstate *));
187 void zs_disable __P((struct zs_chanstate *));
188
189 /*
190 * Is the zs chip present?
191 */
192 static int
193 zs_match_mainbus(parent, cf, aux)
194 struct device *parent;
195 struct cfdata *cf;
196 void *aux;
197 {
198 struct sbus_attach_args *sa = aux;
199
200 if (strcmp(cf->cf_name, sa->sa_name) != 0)
201 return (0);
202
203 return (1);
204 }
205
206 static void
207 zs_attach_mainbus(parent, self, aux)
208 struct device *parent;
209 struct device *self;
210 void *aux;
211 {
212 struct zsc_softc *zsc = (void *) self;
213 struct sbus_attach_args *sa = aux;
214 bus_space_handle_t bh;
215 int zs_unit = zsc->zsc_dev.dv_unit;
216
217 if (sa->sa_nintr == 0) {
218 printf(" no interrupt lines\n");
219 return;
220 }
221
222 /* Use the mapping setup by the Sun PROM if possible. */
223 if (zsaddr[zs_unit] == NULL) {
224 /* Only map registers once. */
225 if (sa->sa_npromvaddrs) {
226 /*
227 * We're converting from a 32-bit pointer to a 64-bit
228 * pointer. Since the 32-bit entity is negative, but
229 * the kernel is still mapped into the lower 4GB
230 * range, this needs to be zero-extended.
231 *
232 * XXXXX If we map the kernel and devices into the
233 * high 4GB range, this needs to be changed to
234 * sign-extend the address.
235 */
236 sparc_promaddr_to_handle(sa->sa_bustag,
237 sa->sa_promvaddrs[0], &bh);
238
239 } else {
240
241 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
242 sa->sa_offset,
243 sa->sa_size,
244 BUS_SPACE_MAP_LINEAR,
245 &bh) != 0) {
246 printf("%s @ sbus: cannot map registers\n",
247 self->dv_xname);
248 return;
249 }
250 }
251 zsaddr[zs_unit] = (struct zsdevice *)
252 bus_space_vaddr(sa->sa_bustag, bh);
253 }
254 zsc->zsc_bustag = sa->sa_bustag;
255 zsc->zsc_dmatag = sa->sa_dmatag;
256 zsc->zsc_promunit = PROM_getpropint(sa->sa_node, "slave", -2);
257 zsc->zsc_node = sa->sa_node;
258 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
259 }
260
261 /*
262 * Attach a found zs.
263 *
264 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
265 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
266 */
267 static void
268 zs_attach(zsc, zsd, pri)
269 struct zsc_softc *zsc;
270 struct zsdevice *zsd;
271 int pri;
272 {
273 struct zsc_attach_args zsc_args;
274 struct zs_chanstate *cs;
275 int s, channel, softpri = PIL_TTY;
276
277 if (zsd == NULL) {
278 printf("configuration incomplete\n");
279 return;
280 }
281
282 printf(" softpri %d\n", softpri);
283
284 /*
285 * Initialize software state for each channel.
286 */
287 for (channel = 0; channel < 2; channel++) {
288 struct zschan *zc;
289 struct device *child;
290
291 zsc_args.channel = channel;
292 cs = &zsc->zsc_cs_store[channel];
293 zsc->zsc_cs[channel] = cs;
294
295 simple_lock_init(&cs->cs_lock);
296 cs->cs_channel = channel;
297 cs->cs_private = NULL;
298 cs->cs_ops = &zsops_null;
299 cs->cs_brg_clk = PCLK / 16;
300
301 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
302
303 zsc_args.consdev = NULL;
304 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
305 zsc->zsc_node,
306 channel);
307
308 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
309 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
310 zsc_args.consdev = &zs_consdev;
311 }
312
313 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
314 zs_conschan_get = zc;
315 }
316 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
317 zs_conschan_put = zc;
318 }
319
320 /* Children need to set cn_dev, etc */
321 cs->cs_reg_csr = &zc->zc_csr;
322 cs->cs_reg_data = &zc->zc_data;
323
324 bcopy(zs_init_reg, cs->cs_creg, 16);
325 bcopy(zs_init_reg, cs->cs_preg, 16);
326
327 /* XXX: Consult PROM properties for this?! */
328 cs->cs_defspeed = zs_get_speed(cs);
329 cs->cs_defcflag = zs_def_cflag;
330
331 /* Make these correspond to cs_defcflag (-crtscts) */
332 cs->cs_rr0_dcd = ZSRR0_DCD;
333 cs->cs_rr0_cts = 0;
334 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
335 cs->cs_wr5_rts = 0;
336
337 /*
338 * Clear the master interrupt enable.
339 * The INTENA is common to both channels,
340 * so just do it on the A channel.
341 */
342 if (channel == 0) {
343 zs_write_reg(cs, 9, 0);
344 }
345
346 /*
347 * Look for a child driver for this channel.
348 * The child attach will setup the hardware.
349 */
350 if (!(child =
351 config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print))) {
352 /* No sub-driver. Just reset it. */
353 u_char reset = (channel == 0) ?
354 ZSWR9_A_RESET : ZSWR9_B_RESET;
355 s = splzs();
356 zs_write_reg(cs, 9, reset);
357 splx(s);
358 }
359 #if (NKBD > 0) || (NMS > 0)
360 /*
361 * If this was a zstty it has a keyboard
362 * property on it we need to attach the
363 * sunkbd and sunms line disciplines.
364 */
365 if (child
366 && (!strcmp(child->dv_cfdata->cf_name, "zstty"))
367 && (PROM_getproplen(zsc->zsc_node, "keyboard") == 0)) {
368 struct kbd_ms_tty_attach_args kma;
369 struct zstty_softc {
370 /* The following are the only fields we need here */
371 struct device zst_dev;
372 struct tty *zst_tty;
373 struct zs_chanstate *zst_cs;
374 } *zst = (struct zstty_softc *)child;
375 struct tty *tp;
376
377 kma.kmta_tp = tp = zst->zst_tty;
378 kma.kmta_dev = tp->t_dev;
379 kma.kmta_consdev = zsc_args.consdev;
380
381 /* Attach 'em if we got 'em. */
382 #if (NKBD > 0)
383 if (channel == 0) {
384 kma.kmta_name = "keyboard";
385 config_found(child, (void *)&kma, NULL);
386 }
387 #endif
388 #if (NMS > 0)
389 if (channel == 1) {
390 kma.kmta_name = "mouse";
391 config_found(child, (void *)&kma, NULL);
392 }
393 #endif
394 }
395 #endif
396 }
397
398 /*
399 * Now safe to install interrupt handlers. Note the arguments
400 * to the interrupt handlers aren't used. Note, we only do this
401 * once since both SCCs interrupt at the same level and vector.
402 */
403 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
404 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
405 panic("zsattach: could not establish soft interrupt");
406
407 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
408 zsc->zsc_dev.dv_xname, "intr");
409
410
411 /*
412 * Set the master interrupt enable and interrupt vector.
413 * (common to both channels, do it on A)
414 */
415 cs = zsc->zsc_cs[0];
416 s = splhigh();
417 /* interrupt vector */
418 zs_write_reg(cs, 2, zs_init_reg[2]);
419 /* master interrupt control (enable) */
420 zs_write_reg(cs, 9, zs_init_reg[9]);
421 splx(s);
422
423 }
424
425 static int
426 zs_print(aux, name)
427 void *aux;
428 const char *name;
429 {
430 struct zsc_attach_args *args = aux;
431
432 if (name != NULL)
433 aprint_normal("%s: ", name);
434
435 if (args->channel != -1)
436 aprint_normal(" channel %d", args->channel);
437
438 return (UNCONF);
439 }
440
441 /* Deprecate this? */
442 static volatile int zssoftpending;
443
444 static int
445 zshard(arg)
446 void *arg;
447 {
448 struct zsc_softc *zsc = (struct zsc_softc *)arg;
449 int rr3, rval;
450
451 rval = 0;
452 while ((rr3 = zsc_intr_hard(zsc))) {
453 /* Count up the interrupts. */
454 rval |= rr3;
455 zsc->zsc_intrcnt.ev_count++;
456 }
457 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
458 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
459 zsc->zsc_softintr) {
460 zssoftpending = PIL_TTY;
461 softintr_schedule(zsc->zsc_softintr);
462 }
463 return (rval);
464 }
465
466 int
467 zscheckintr(arg)
468 void *arg;
469 {
470 struct zsc_softc *zsc;
471 int unit, rval;
472
473 rval = 0;
474 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
475
476 zsc = zs_cd.cd_devs[unit];
477 if (zsc == NULL)
478 continue;
479 rval = (zshard((void *)zsc) || rval);
480 }
481 return (rval);
482 }
483
484
485 /*
486 * We need this only for TTY_DEBUG purposes.
487 */
488 static void
489 zssoft(arg)
490 void *arg;
491 {
492 struct zsc_softc *zsc = (struct zsc_softc *)arg;
493 int s;
494
495 /* Make sure we call the tty layer at spltty. */
496 s = spltty();
497 zssoftpending = 0;
498 (void)zsc_intr_soft(zsc);
499 #ifdef TTY_DEBUG
500 {
501 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
502 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
503 if (zst0->zst_overflows || zst1->zst_overflows ) {
504 struct trapframe *frame = (struct trapframe *)arg;
505
506 printf("zs silo overflow from %p\n",
507 (long)frame->tf_pc);
508 }
509 }
510 #endif
511 splx(s);
512 }
513
514
515 /*
516 * Compute the current baud rate given a ZS channel.
517 */
518 static int
519 zs_get_speed(cs)
520 struct zs_chanstate *cs;
521 {
522 int tconst;
523
524 tconst = zs_read_reg(cs, 12);
525 tconst |= zs_read_reg(cs, 13) << 8;
526 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
527 }
528
529 /*
530 * MD functions for setting the baud rate and control modes.
531 */
532 int
533 zs_set_speed(cs, bps)
534 struct zs_chanstate *cs;
535 int bps; /* bits per second */
536 {
537 int tconst, real_bps;
538
539 if (bps == 0)
540 return (0);
541
542 #ifdef DIAGNOSTIC
543 if (cs->cs_brg_clk == 0)
544 panic("zs_set_speed");
545 #endif
546
547 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
548 if (tconst < 0)
549 return (EINVAL);
550
551 /* Convert back to make sure we can do it. */
552 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
553
554 /* XXX - Allow some tolerance here? */
555 if (real_bps != bps)
556 return (EINVAL);
557
558 cs->cs_preg[12] = tconst;
559 cs->cs_preg[13] = tconst >> 8;
560
561 /* Caller will stuff the pending registers. */
562 return (0);
563 }
564
565 int
566 zs_set_modes(cs, cflag)
567 struct zs_chanstate *cs;
568 int cflag; /* bits per second */
569 {
570 int s;
571
572 /*
573 * Output hardware flow control on the chip is horrendous:
574 * if carrier detect drops, the receiver is disabled, and if
575 * CTS drops, the transmitter is stoped IN MID CHARACTER!
576 * Therefore, NEVER set the HFC bit, and instead use the
577 * status interrupt to detect CTS changes.
578 */
579 s = splzs();
580 cs->cs_rr0_pps = 0;
581 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
582 cs->cs_rr0_dcd = 0;
583 if ((cflag & MDMBUF) == 0)
584 cs->cs_rr0_pps = ZSRR0_DCD;
585 } else
586 cs->cs_rr0_dcd = ZSRR0_DCD;
587 if ((cflag & CRTSCTS) != 0) {
588 cs->cs_wr5_dtr = ZSWR5_DTR;
589 cs->cs_wr5_rts = ZSWR5_RTS;
590 cs->cs_rr0_cts = ZSRR0_CTS;
591 } else if ((cflag & CDTRCTS) != 0) {
592 cs->cs_wr5_dtr = 0;
593 cs->cs_wr5_rts = ZSWR5_DTR;
594 cs->cs_rr0_cts = ZSRR0_CTS;
595 } else if ((cflag & MDMBUF) != 0) {
596 cs->cs_wr5_dtr = 0;
597 cs->cs_wr5_rts = ZSWR5_DTR;
598 cs->cs_rr0_cts = ZSRR0_DCD;
599 } else {
600 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
601 cs->cs_wr5_rts = 0;
602 cs->cs_rr0_cts = 0;
603 }
604 splx(s);
605
606 /* Caller will stuff the pending registers. */
607 return (0);
608 }
609
610
611 /*
612 * Read or write the chip with suitable delays.
613 */
614
615 u_char
616 zs_read_reg(cs, reg)
617 struct zs_chanstate *cs;
618 u_char reg;
619 {
620 u_char val;
621
622 *cs->cs_reg_csr = reg;
623 ZS_DELAY();
624 val = *cs->cs_reg_csr;
625 ZS_DELAY();
626 return (val);
627 }
628
629 void
630 zs_write_reg(cs, reg, val)
631 struct zs_chanstate *cs;
632 u_char reg, val;
633 {
634 *cs->cs_reg_csr = reg;
635 ZS_DELAY();
636 *cs->cs_reg_csr = val;
637 ZS_DELAY();
638 }
639
640 u_char
641 zs_read_csr(cs)
642 struct zs_chanstate *cs;
643 {
644 u_char val;
645
646 val = *cs->cs_reg_csr;
647 ZS_DELAY();
648 return (val);
649 }
650
651 void zs_write_csr(cs, val)
652 struct zs_chanstate *cs;
653 u_char val;
654 {
655 *cs->cs_reg_csr = val;
656 ZS_DELAY();
657 }
658
659 u_char zs_read_data(cs)
660 struct zs_chanstate *cs;
661 {
662 u_char val;
663
664 val = *cs->cs_reg_data;
665 ZS_DELAY();
666 return (val);
667 }
668
669 void zs_write_data(cs, val)
670 struct zs_chanstate *cs;
671 u_char val;
672 {
673 *cs->cs_reg_data = val;
674 ZS_DELAY();
675 }
676
677 /****************************************************************
678 * Console support functions (Sun specific!)
679 * Note: this code is allowed to know about the layout of
680 * the chip registers, and uses that to keep things simple.
681 * XXX - I think I like the mvme167 code better. -gwr
682 ****************************************************************/
683
684 extern void Debugger __P((void));
685
686 /*
687 * Handle user request to enter kernel debugger.
688 */
689 void
690 zs_abort(cs)
691 struct zs_chanstate *cs;
692 {
693 volatile struct zschan *zc = zs_conschan_get;
694 int rr0;
695
696 /* Wait for end of break to avoid PROM abort. */
697 /* XXX - Limit the wait? */
698 do {
699 rr0 = zc->zc_csr;
700 ZS_DELAY();
701 } while (rr0 & ZSRR0_BREAK);
702
703 #if defined(KGDB)
704 zskgdb(cs);
705 #elif defined(DDB)
706 {
707 extern int db_active;
708
709 if (!db_active)
710 Debugger();
711 else
712 /* Debugger is probably hozed */
713 callrom();
714 }
715 #else
716 printf("stopping on keyboard abort\n");
717 callrom();
718 #endif
719 }
720
721
722 /*
723 * Polled input char.
724 */
725 int
726 zs_getc(arg)
727 void *arg;
728 {
729 volatile struct zschan *zc = arg;
730 int s, c, rr0;
731
732 s = splhigh();
733 /* Wait for a character to arrive. */
734 do {
735 rr0 = zc->zc_csr;
736 ZS_DELAY();
737 } while ((rr0 & ZSRR0_RX_READY) == 0);
738
739 c = zc->zc_data;
740 ZS_DELAY();
741 splx(s);
742
743 /*
744 * This is used by the kd driver to read scan codes,
745 * so don't translate '\r' ==> '\n' here...
746 */
747 return (c);
748 }
749
750 /*
751 * Polled output char.
752 */
753 void
754 zs_putc(arg, c)
755 void *arg;
756 int c;
757 {
758 volatile struct zschan *zc = arg;
759 int s, rr0;
760
761 s = splhigh();
762
763 /* Wait for transmitter to become ready. */
764 do {
765 rr0 = zc->zc_csr;
766 ZS_DELAY();
767 } while ((rr0 & ZSRR0_TX_READY) == 0);
768
769 /*
770 * Send the next character.
771 * Now you'd think that this could be followed by a ZS_DELAY()
772 * just like all the other chip accesses, but it turns out that
773 * the `transmit-ready' interrupt isn't de-asserted until
774 * some period of time after the register write completes
775 * (more than a couple instructions). So to avoid stray
776 * interrupts we put in the 2us delay regardless of cpu model.
777 */
778 zc->zc_data = c;
779 delay(2);
780
781 splx(s);
782 }
783
784 /*****************************************************************/
785
786
787
788
789 /*
790 * Polled console input putchar.
791 */
792 static int
793 zscngetc(dev)
794 dev_t dev;
795 {
796 return (zs_getc(zs_conschan_get));
797 }
798
799 /*
800 * Polled console output putchar.
801 */
802 static void
803 zscnputc(dev, c)
804 dev_t dev;
805 int c;
806 {
807 zs_putc(zs_conschan_put, c);
808 }
809
810 int swallow_zsintrs;
811
812 static void
813 zscnpollc(dev, on)
814 dev_t dev;
815 int on;
816 {
817 /*
818 * Need to tell zs driver to acknowledge all interrupts or we get
819 * annoying spurious interrupt messages. This is because mucking
820 * with spl() levels during polling does not prevent interrupts from
821 * being generated.
822 */
823
824 if (on) swallow_zsintrs++;
825 else swallow_zsintrs--;
826 }
827
828 int
829 zs_console_flags(promunit, node, channel)
830 int promunit;
831 int node;
832 int channel;
833 {
834 int cookie, flags = 0;
835 u_int options;
836 char buf[255];
837
838 /*
839 * We'll just to the OBP grovelling down here since that's
840 * the only type of firmware we support.
841 */
842 options = OF_finddevice("/options");
843
844 /* Default to channel 0 if there are no explicit prom args */
845 cookie = 0;
846 if (node == OF_instance_to_package(OF_stdin())) {
847 if (OF_getprop(options, "input-device", buf, sizeof(buf)) != -1) {
848
849 if (!strcmp("ttyb", buf))
850 cookie = 1;
851 }
852
853 if (channel == cookie)
854 flags |= ZS_HWFLAG_CONSOLE_INPUT;
855 }
856
857 if (node == OF_instance_to_package(OF_stdout())) {
858 if (OF_getprop(options, "output-device", buf, sizeof(buf)) != -1) {
859
860 if (!strcmp("ttyb", buf))
861 cookie = 1;
862 }
863
864 if (channel == cookie)
865 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
866 }
867
868 return (flags);
869 }
870
871