zs.c revision 1.46.2.4 1 /* $NetBSD: zs.c,v 1.46.2.4 2005/11/10 13:59:18 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.46.2.4 2005/11/10 13:59:18 skrll Exp $");
49
50 #include "opt_ddb.h"
51 #include "opt_kgdb.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/conf.h>
56 #include <sys/device.h>
57 #include <sys/file.h>
58 #include <sys/ioctl.h>
59 #include <sys/kernel.h>
60 #include <sys/proc.h>
61 #include <sys/tty.h>
62 #include <sys/time.h>
63 #include <sys/syslog.h>
64
65 #include <machine/autoconf.h>
66 #include <machine/openfirm.h>
67 #include <machine/cpu.h>
68 #include <machine/eeprom.h>
69 #include <machine/psl.h>
70 #include <machine/z8530var.h>
71
72 #include <dev/cons.h>
73 #include <dev/ic/z8530reg.h>
74 #include <dev/sun/kbd_ms_ttyvar.h>
75 #include <ddb/db_output.h>
76
77 #include <sparc64/dev/cons.h>
78
79 #include "kbd.h" /* NKBD */
80 #include "ms.h" /* NMS */
81 #include "zs.h" /* NZS */
82
83 /* Make life easier for the initialized arrays here. */
84 #if NZS < 3
85 #undef NZS
86 #define NZS 3
87 #endif
88
89 /*
90 * Some warts needed by z8530tty.c -
91 * The default parity REALLY needs to be the same as the PROM uses,
92 * or you can not see messages done with printf during boot-up...
93 */
94 int zs_def_cflag = (CREAD | CS8 | HUPCL);
95
96 /*
97 * The Sun provides a 4.9152 MHz clock to the ZS chips.
98 */
99 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
100
101 #define ZS_DELAY()
102
103 /* The layout of this is hardware-dependent (padding, order). */
104 struct zschan {
105 volatile u_char zc_csr; /* ctrl,status, and indirect access */
106 u_char zc_xxx0;
107 volatile u_char zc_data; /* data */
108 u_char zc_xxx1;
109 };
110 struct zsdevice {
111 /* Yes, they are backwards. */
112 struct zschan zs_chan_b;
113 struct zschan zs_chan_a;
114 };
115
116 /* ZS channel used as the console device (if any) */
117 void *zs_conschan_get, *zs_conschan_put;
118
119 /* Saved PROM mappings */
120 static struct zsdevice *zsaddr[NZS];
121
122 static u_char zs_init_reg[16] = {
123 0, /* 0: CMD (reset, etc.) */
124 0, /* 1: No interrupts yet. */
125 0, /* 2: IVECT */
126 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
127 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
128 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
129 0, /* 6: TXSYNC/SYNCLO */
130 0, /* 7: RXSYNC/SYNCHI */
131 0, /* 8: alias for data port */
132 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
133 0, /*10: Misc. TX/RX control bits */
134 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
135 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
136 0, /*13: BAUDHI (default=9600) */
137 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
138 ZSWR15_BREAK_IE,
139 };
140
141 /* Console ops */
142 static int zscngetc __P((dev_t));
143 static void zscnputc __P((dev_t, int));
144 static void zscnpollc __P((dev_t, int));
145
146 struct consdev zs_consdev = {
147 NULL,
148 NULL,
149 zscngetc,
150 zscnputc,
151 zscnpollc,
152 NULL,
153 };
154
155
156 /****************************************************************
157 * Autoconfig
158 ****************************************************************/
159
160 /* Definition of the driver for autoconfig. */
161 static int zs_match_sbus __P((struct device *, struct cfdata *, void *));
162 static void zs_attach_sbus __P((struct device *, struct device *, void *));
163
164 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
165 static int zs_print __P((void *, const char *name));
166
167 CFATTACH_DECL(zs, sizeof(struct zsc_softc),
168 zs_match_sbus, zs_attach_sbus, NULL, NULL);
169
170 extern struct cfdriver zs_cd;
171
172 /* Interrupt handlers. */
173 int zscheckintr __P((void *));
174 static int zshard __P((void *));
175 static void zssoft __P((void *));
176
177 static int zs_get_speed __P((struct zs_chanstate *));
178
179 /* Console device support */
180 static int zs_console_flags __P((int, int, int));
181
182 /* Power management hooks */
183 int zs_enable __P((struct zs_chanstate *));
184 void zs_disable __P((struct zs_chanstate *));
185
186 /* from dev/ic/z8530tty.c */
187 struct tty *zstty_get_tty_from_dev(struct device *);
188
189 /*
190 * Is the zs chip present?
191 */
192 static int
193 zs_match_sbus(parent, cf, aux)
194 struct device *parent;
195 struct cfdata *cf;
196 void *aux;
197 {
198 struct sbus_attach_args *sa = aux;
199
200 if (strcmp(cf->cf_name, sa->sa_name) != 0)
201 return (0);
202
203 return (1);
204 }
205
206 static void
207 zs_attach_sbus(parent, self, aux)
208 struct device *parent;
209 struct device *self;
210 void *aux;
211 {
212 struct zsc_softc *zsc = (void *) self;
213 struct sbus_attach_args *sa = aux;
214 bus_space_handle_t bh;
215 int zs_unit = zsc->zsc_dev.dv_unit;
216
217 if (sa->sa_nintr == 0) {
218 printf(" no interrupt lines\n");
219 return;
220 }
221
222 /* Use the mapping setup by the Sun PROM if possible. */
223 if (zsaddr[zs_unit] == NULL) {
224 /* Only map registers once. */
225 if (sa->sa_npromvaddrs) {
226 /*
227 * We're converting from a 32-bit pointer to a 64-bit
228 * pointer. Since the 32-bit entity is negative, but
229 * the kernel is still mapped into the lower 4GB
230 * range, this needs to be zero-extended.
231 *
232 * XXXXX If we map the kernel and devices into the
233 * high 4GB range, this needs to be changed to
234 * sign-extend the address.
235 */
236 sparc_promaddr_to_handle(sa->sa_bustag,
237 sa->sa_promvaddrs[0], &bh);
238
239 } else {
240
241 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
242 sa->sa_offset,
243 sa->sa_size,
244 BUS_SPACE_MAP_LINEAR,
245 &bh) != 0) {
246 printf("%s @ sbus: cannot map registers\n",
247 self->dv_xname);
248 return;
249 }
250 }
251 zsaddr[zs_unit] = (struct zsdevice *)
252 bus_space_vaddr(sa->sa_bustag, bh);
253 }
254 zsc->zsc_bustag = sa->sa_bustag;
255 zsc->zsc_dmatag = sa->sa_dmatag;
256 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
257 zsc->zsc_node = sa->sa_node;
258 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
259 }
260
261 /*
262 * Attach a found zs.
263 *
264 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
265 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
266 */
267 static void
268 zs_attach(zsc, zsd, pri)
269 struct zsc_softc *zsc;
270 struct zsdevice *zsd;
271 int pri;
272 {
273 struct zsc_attach_args zsc_args;
274 struct zs_chanstate *cs;
275 int s, channel, softpri = PIL_TTY;
276
277 if (zsd == NULL) {
278 printf("configuration incomplete\n");
279 return;
280 }
281
282 printf(" softpri %d\n", softpri);
283
284 /*
285 * Initialize software state for each channel.
286 */
287 for (channel = 0; channel < 2; channel++) {
288 struct zschan *zc;
289 struct device *child;
290
291 zsc_args.channel = channel;
292 cs = &zsc->zsc_cs_store[channel];
293 zsc->zsc_cs[channel] = cs;
294
295 simple_lock_init(&cs->cs_lock);
296 cs->cs_channel = channel;
297 cs->cs_private = NULL;
298 cs->cs_ops = &zsops_null;
299 cs->cs_brg_clk = PCLK / 16;
300
301 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
302
303 zsc_args.consdev = NULL;
304 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
305 zsc->zsc_node,
306 channel);
307
308 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
309 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
310 zsc_args.consdev = &zs_consdev;
311 }
312
313 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
314 zs_conschan_get = zc;
315 }
316 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
317 zs_conschan_put = zc;
318 }
319
320 /* Children need to set cn_dev, etc */
321 cs->cs_reg_csr = &zc->zc_csr;
322 cs->cs_reg_data = &zc->zc_data;
323
324 memcpy(cs->cs_creg, zs_init_reg, 16);
325 memcpy(cs->cs_preg, zs_init_reg, 16);
326
327 /* XXX: Consult PROM properties for this?! */
328 cs->cs_defspeed = zs_get_speed(cs);
329 cs->cs_defcflag = zs_def_cflag;
330
331 /* Make these correspond to cs_defcflag (-crtscts) */
332 cs->cs_rr0_dcd = ZSRR0_DCD;
333 cs->cs_rr0_cts = 0;
334 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
335 cs->cs_wr5_rts = 0;
336
337 /*
338 * Clear the master interrupt enable.
339 * The INTENA is common to both channels,
340 * so just do it on the A channel.
341 */
342 if (channel == 0) {
343 zs_write_reg(cs, 9, 0);
344 }
345
346 /*
347 * Look for a child driver for this channel.
348 * The child attach will setup the hardware.
349 */
350 child = config_found(&zsc->zsc_dev, (void *)&zsc_args,
351 zs_print);
352 if (child == NULL) {
353 /* No sub-driver. Just reset it. */
354 u_char reset = (channel == 0) ?
355 ZSWR9_A_RESET : ZSWR9_B_RESET;
356 s = splzs();
357 zs_write_reg(cs, 9, reset);
358 splx(s);
359 }
360 #if (NKBD > 0) || (NMS > 0)
361 /*
362 * If this was a zstty it has a keyboard
363 * property on it we need to attach the
364 * sunkbd and sunms line disciplines.
365 */
366 if (child
367 && (!strcmp(child->dv_cfdata->cf_name, "zstty"))
368 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
369 struct kbd_ms_tty_attach_args kma;
370 struct tty *tp;
371
372 kma.kmta_tp = tp = zstty_get_tty_from_dev(child);
373 kma.kmta_dev = tp->t_dev;
374 kma.kmta_consdev = zsc_args.consdev;
375
376 /* Attach 'em if we got 'em. */
377 #if (NKBD > 0)
378 if (channel == 0) {
379 kma.kmta_name = "keyboard";
380 config_found(child, (void *)&kma, NULL);
381 }
382 #endif
383 #if (NMS > 0)
384 if (channel == 1) {
385 kma.kmta_name = "mouse";
386 config_found(child, (void *)&kma, NULL);
387 }
388 #endif
389 }
390 #endif
391 }
392
393 /*
394 * Now safe to install interrupt handlers. Note the arguments
395 * to the interrupt handlers aren't used. Note, we only do this
396 * once since both SCCs interrupt at the same level and vector.
397 */
398 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
399 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
400 panic("zsattach: could not establish soft interrupt");
401
402 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
403 zsc->zsc_dev.dv_xname, "intr");
404
405
406 /*
407 * Set the master interrupt enable and interrupt vector.
408 * (common to both channels, do it on A)
409 */
410 cs = zsc->zsc_cs[0];
411 s = splhigh();
412 /* interrupt vector */
413 zs_write_reg(cs, 2, zs_init_reg[2]);
414 /* master interrupt control (enable) */
415 zs_write_reg(cs, 9, zs_init_reg[9]);
416 splx(s);
417
418 }
419
420 static int
421 zs_print(aux, name)
422 void *aux;
423 const char *name;
424 {
425 struct zsc_attach_args *args = aux;
426
427 if (name != NULL)
428 aprint_normal("%s: ", name);
429
430 if (args->channel != -1)
431 aprint_normal(" channel %d", args->channel);
432
433 return (UNCONF);
434 }
435
436 /* Deprecate this? */
437 static volatile int zssoftpending;
438
439 static int
440 zshard(arg)
441 void *arg;
442 {
443 struct zsc_softc *zsc = (struct zsc_softc *)arg;
444 int rr3, rval;
445
446 rval = 0;
447 while ((rr3 = zsc_intr_hard(zsc))) {
448 /* Count up the interrupts. */
449 rval |= rr3;
450 zsc->zsc_intrcnt.ev_count++;
451 }
452 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
453 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
454 zsc->zsc_softintr) {
455 zssoftpending = PIL_TTY;
456 softintr_schedule(zsc->zsc_softintr);
457 }
458 return (rval);
459 }
460
461 int
462 zscheckintr(arg)
463 void *arg;
464 {
465 struct zsc_softc *zsc;
466 int unit, rval;
467
468 rval = 0;
469 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
470
471 zsc = zs_cd.cd_devs[unit];
472 if (zsc == NULL)
473 continue;
474 rval = (zshard((void *)zsc) || rval);
475 }
476 return (rval);
477 }
478
479
480 /*
481 * We need this only for TTY_DEBUG purposes.
482 */
483 static void
484 zssoft(arg)
485 void *arg;
486 {
487 struct zsc_softc *zsc = (struct zsc_softc *)arg;
488 int s;
489
490 /* Make sure we call the tty layer at spltty. */
491 s = spltty();
492 zssoftpending = 0;
493 (void)zsc_intr_soft(zsc);
494 #ifdef TTY_DEBUG
495 {
496 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
497 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
498 if (zst0->zst_overflows || zst1->zst_overflows ) {
499 struct trapframe *frame = (struct trapframe *)arg;
500
501 printf("zs silo overflow from %p\n",
502 (long)frame->tf_pc);
503 }
504 }
505 #endif
506 splx(s);
507 }
508
509
510 /*
511 * Compute the current baud rate given a ZS channel.
512 */
513 static int
514 zs_get_speed(cs)
515 struct zs_chanstate *cs;
516 {
517 int tconst;
518
519 tconst = zs_read_reg(cs, 12);
520 tconst |= zs_read_reg(cs, 13) << 8;
521 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
522 }
523
524 /*
525 * MD functions for setting the baud rate and control modes.
526 */
527 int
528 zs_set_speed(cs, bps)
529 struct zs_chanstate *cs;
530 int bps; /* bits per second */
531 {
532 int tconst, real_bps;
533
534 if (bps == 0)
535 return (0);
536
537 #ifdef DIAGNOSTIC
538 if (cs->cs_brg_clk == 0)
539 panic("zs_set_speed");
540 #endif
541
542 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
543 if (tconst < 0)
544 return (EINVAL);
545
546 /* Convert back to make sure we can do it. */
547 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
548
549 /* XXX - Allow some tolerance here? */
550 if (real_bps != bps)
551 return (EINVAL);
552
553 cs->cs_preg[12] = tconst;
554 cs->cs_preg[13] = tconst >> 8;
555
556 /* Caller will stuff the pending registers. */
557 return (0);
558 }
559
560 int
561 zs_set_modes(cs, cflag)
562 struct zs_chanstate *cs;
563 int cflag; /* bits per second */
564 {
565 int s;
566
567 /*
568 * Output hardware flow control on the chip is horrendous:
569 * if carrier detect drops, the receiver is disabled, and if
570 * CTS drops, the transmitter is stoped IN MID CHARACTER!
571 * Therefore, NEVER set the HFC bit, and instead use the
572 * status interrupt to detect CTS changes.
573 */
574 s = splzs();
575 cs->cs_rr0_pps = 0;
576 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
577 cs->cs_rr0_dcd = 0;
578 if ((cflag & MDMBUF) == 0)
579 cs->cs_rr0_pps = ZSRR0_DCD;
580 } else
581 cs->cs_rr0_dcd = ZSRR0_DCD;
582 if ((cflag & CRTSCTS) != 0) {
583 cs->cs_wr5_dtr = ZSWR5_DTR;
584 cs->cs_wr5_rts = ZSWR5_RTS;
585 cs->cs_rr0_cts = ZSRR0_CTS;
586 } else if ((cflag & CDTRCTS) != 0) {
587 cs->cs_wr5_dtr = 0;
588 cs->cs_wr5_rts = ZSWR5_DTR;
589 cs->cs_rr0_cts = ZSRR0_CTS;
590 } else if ((cflag & MDMBUF) != 0) {
591 cs->cs_wr5_dtr = 0;
592 cs->cs_wr5_rts = ZSWR5_DTR;
593 cs->cs_rr0_cts = ZSRR0_DCD;
594 } else {
595 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
596 cs->cs_wr5_rts = 0;
597 cs->cs_rr0_cts = 0;
598 }
599 splx(s);
600
601 /* Caller will stuff the pending registers. */
602 return (0);
603 }
604
605
606 /*
607 * Read or write the chip with suitable delays.
608 */
609
610 u_char
611 zs_read_reg(cs, reg)
612 struct zs_chanstate *cs;
613 u_char reg;
614 {
615 u_char val;
616
617 *cs->cs_reg_csr = reg;
618 ZS_DELAY();
619 val = *cs->cs_reg_csr;
620 ZS_DELAY();
621 return (val);
622 }
623
624 void
625 zs_write_reg(cs, reg, val)
626 struct zs_chanstate *cs;
627 u_char reg, val;
628 {
629 *cs->cs_reg_csr = reg;
630 ZS_DELAY();
631 *cs->cs_reg_csr = val;
632 ZS_DELAY();
633 }
634
635 u_char
636 zs_read_csr(cs)
637 struct zs_chanstate *cs;
638 {
639 u_char val;
640
641 val = *cs->cs_reg_csr;
642 ZS_DELAY();
643 return (val);
644 }
645
646 void zs_write_csr(cs, val)
647 struct zs_chanstate *cs;
648 u_char val;
649 {
650 *cs->cs_reg_csr = val;
651 ZS_DELAY();
652 }
653
654 u_char zs_read_data(cs)
655 struct zs_chanstate *cs;
656 {
657 u_char val;
658
659 val = *cs->cs_reg_data;
660 ZS_DELAY();
661 return (val);
662 }
663
664 void zs_write_data(cs, val)
665 struct zs_chanstate *cs;
666 u_char val;
667 {
668 *cs->cs_reg_data = val;
669 ZS_DELAY();
670 }
671
672 /****************************************************************
673 * Console support functions (Sun specific!)
674 * Note: this code is allowed to know about the layout of
675 * the chip registers, and uses that to keep things simple.
676 * XXX - I think I like the mvme167 code better. -gwr
677 ****************************************************************/
678
679 extern void Debugger __P((void));
680
681 /*
682 * Handle user request to enter kernel debugger.
683 */
684 void
685 zs_abort(cs)
686 struct zs_chanstate *cs;
687 {
688 volatile struct zschan *zc = zs_conschan_get;
689 int rr0;
690
691 /* Wait for end of break to avoid PROM abort. */
692 /* XXX - Limit the wait? */
693 do {
694 rr0 = zc->zc_csr;
695 ZS_DELAY();
696 } while (rr0 & ZSRR0_BREAK);
697
698 #if defined(KGDB)
699 zskgdb(cs);
700 #elif defined(DDB)
701 {
702 extern int db_active;
703
704 if (!db_active)
705 Debugger();
706 else
707 /* Debugger is probably hozed */
708 callrom();
709 }
710 #else
711 printf("stopping on keyboard abort\n");
712 callrom();
713 #endif
714 }
715
716
717 /*
718 * Polled input char.
719 */
720 int
721 zs_getc(arg)
722 void *arg;
723 {
724 volatile struct zschan *zc = arg;
725 int s, c, rr0;
726
727 s = splhigh();
728 /* Wait for a character to arrive. */
729 do {
730 rr0 = zc->zc_csr;
731 ZS_DELAY();
732 } while ((rr0 & ZSRR0_RX_READY) == 0);
733
734 c = zc->zc_data;
735 ZS_DELAY();
736 splx(s);
737
738 /*
739 * This is used by the kd driver to read scan codes,
740 * so don't translate '\r' ==> '\n' here...
741 */
742 return (c);
743 }
744
745 /*
746 * Polled output char.
747 */
748 void
749 zs_putc(arg, c)
750 void *arg;
751 int c;
752 {
753 volatile struct zschan *zc = arg;
754 int s, rr0;
755
756 s = splhigh();
757
758 /* Wait for transmitter to become ready. */
759 do {
760 rr0 = zc->zc_csr;
761 ZS_DELAY();
762 } while ((rr0 & ZSRR0_TX_READY) == 0);
763
764 /*
765 * Send the next character.
766 * Now you'd think that this could be followed by a ZS_DELAY()
767 * just like all the other chip accesses, but it turns out that
768 * the `transmit-ready' interrupt isn't de-asserted until
769 * some period of time after the register write completes
770 * (more than a couple instructions). So to avoid stray
771 * interrupts we put in the 2us delay regardless of CPU model.
772 */
773 zc->zc_data = c;
774 delay(2);
775
776 splx(s);
777 }
778
779 /*****************************************************************/
780
781
782
783
784 /*
785 * Polled console input putchar.
786 */
787 static int
788 zscngetc(dev)
789 dev_t dev;
790 {
791 return (zs_getc(zs_conschan_get));
792 }
793
794 /*
795 * Polled console output putchar.
796 */
797 static void
798 zscnputc(dev, c)
799 dev_t dev;
800 int c;
801 {
802 zs_putc(zs_conschan_put, c);
803 }
804
805 int swallow_zsintrs;
806
807 static void
808 zscnpollc(dev, on)
809 dev_t dev;
810 int on;
811 {
812 /*
813 * Need to tell zs driver to acknowledge all interrupts or we get
814 * annoying spurious interrupt messages. This is because mucking
815 * with spl() levels during polling does not prevent interrupts from
816 * being generated.
817 */
818
819 if (on) swallow_zsintrs++;
820 else swallow_zsintrs--;
821 }
822
823 int
824 zs_console_flags(promunit, node, channel)
825 int promunit;
826 int node;
827 int channel;
828 {
829 int cookie, flags = 0;
830 char buf[255];
831
832 /*
833 * We'll just do the OBP grovelling down here since that's
834 * the only type of firmware we support.
835 */
836
837 /* Default to channel 0 if there are no explicit prom args */
838 cookie = 0;
839 if (node == prom_instance_to_package(prom_stdin())) {
840 if (prom_getoption("input-device", buf, sizeof buf) != 0 &&
841 strcmp("ttyb", buf) == 0)
842 cookie = 1;
843
844 if (channel == cookie)
845 flags |= ZS_HWFLAG_CONSOLE_INPUT;
846 }
847
848 if (node == prom_instance_to_package(prom_stdout())) {
849 if (prom_getoption("output-device", buf, sizeof buf) != 0 &&
850 strcmp("ttyb", buf) == 0)
851 cookie = 1;
852
853 if (channel == cookie)
854 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
855 }
856
857 return (flags);
858 }
859
860