zs.c revision 1.53 1 /* $NetBSD: zs.c,v 1.53 2004/03/19 15:42:46 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.53 2004/03/19 15:42:46 pk Exp $");
49
50 #include "opt_ddb.h"
51 #include "opt_kgdb.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/conf.h>
56 #include <sys/device.h>
57 #include <sys/file.h>
58 #include <sys/ioctl.h>
59 #include <sys/kernel.h>
60 #include <sys/proc.h>
61 #include <sys/tty.h>
62 #include <sys/time.h>
63 #include <sys/syslog.h>
64
65 #include <machine/autoconf.h>
66 #include <machine/openfirm.h>
67 #include <machine/cpu.h>
68 #include <machine/eeprom.h>
69 #include <machine/psl.h>
70 #include <machine/z8530var.h>
71
72 #include <dev/cons.h>
73 #include <dev/ic/z8530reg.h>
74 #include <dev/sun/kbd_ms_ttyvar.h>
75 #include <ddb/db_output.h>
76
77 #include <sparc64/dev/cons.h>
78
79 #include "kbd.h" /* NKBD */
80 #include "ms.h" /* NMS */
81 #include "zs.h" /* NZS */
82
83 /* Make life easier for the initialized arrays here. */
84 #if NZS < 3
85 #undef NZS
86 #define NZS 3
87 #endif
88
89 /*
90 * Some warts needed by z8530tty.c -
91 * The default parity REALLY needs to be the same as the PROM uses,
92 * or you can not see messages done with printf during boot-up...
93 */
94 int zs_def_cflag = (CREAD | CS8 | HUPCL);
95
96 /*
97 * The Sun provides a 4.9152 MHz clock to the ZS chips.
98 */
99 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
100
101 #define ZS_DELAY()
102
103 /* The layout of this is hardware-dependent (padding, order). */
104 struct zschan {
105 volatile u_char zc_csr; /* ctrl,status, and indirect access */
106 u_char zc_xxx0;
107 volatile u_char zc_data; /* data */
108 u_char zc_xxx1;
109 };
110 struct zsdevice {
111 /* Yes, they are backwards. */
112 struct zschan zs_chan_b;
113 struct zschan zs_chan_a;
114 };
115
116 /* ZS channel used as the console device (if any) */
117 void *zs_conschan_get, *zs_conschan_put;
118
119 /* Saved PROM mappings */
120 static struct zsdevice *zsaddr[NZS];
121
122 static u_char zs_init_reg[16] = {
123 0, /* 0: CMD (reset, etc.) */
124 0, /* 1: No interrupts yet. */
125 0, /* 2: IVECT */
126 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
127 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
128 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
129 0, /* 6: TXSYNC/SYNCLO */
130 0, /* 7: RXSYNC/SYNCHI */
131 0, /* 8: alias for data port */
132 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
133 0, /*10: Misc. TX/RX control bits */
134 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
135 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
136 0, /*13: BAUDHI (default=9600) */
137 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
138 ZSWR15_BREAK_IE,
139 };
140
141 /* Console ops */
142 static int zscngetc __P((dev_t));
143 static void zscnputc __P((dev_t, int));
144 static void zscnpollc __P((dev_t, int));
145
146 struct consdev zs_consdev = {
147 NULL,
148 NULL,
149 zscngetc,
150 zscnputc,
151 zscnpollc,
152 NULL,
153 };
154
155
156 /****************************************************************
157 * Autoconfig
158 ****************************************************************/
159
160 /* Definition of the driver for autoconfig. */
161 static int zs_match_sbus __P((struct device *, struct cfdata *, void *));
162 static void zs_attach_sbus __P((struct device *, struct device *, void *));
163
164 static void zs_attach __P((struct zsc_softc *, struct zsdevice *, int));
165 static int zs_print __P((void *, const char *name));
166
167 CFATTACH_DECL(zs, sizeof(struct zsc_softc),
168 zs_match_sbus, zs_attach_sbus, NULL, NULL);
169
170 extern struct cfdriver zs_cd;
171
172 /* Interrupt handlers. */
173 int zscheckintr __P((void *));
174 static int zshard __P((void *));
175 static void zssoft __P((void *));
176
177 static int zs_get_speed __P((struct zs_chanstate *));
178
179 /* Console device support */
180 static int zs_console_flags __P((int, int, int));
181
182 /* Power management hooks */
183 int zs_enable __P((struct zs_chanstate *));
184 void zs_disable __P((struct zs_chanstate *));
185
186 /*
187 * Is the zs chip present?
188 */
189 static int
190 zs_match_sbus(parent, cf, aux)
191 struct device *parent;
192 struct cfdata *cf;
193 void *aux;
194 {
195 struct sbus_attach_args *sa = aux;
196
197 if (strcmp(cf->cf_name, sa->sa_name) != 0)
198 return (0);
199
200 return (1);
201 }
202
203 static void
204 zs_attach_sbus(parent, self, aux)
205 struct device *parent;
206 struct device *self;
207 void *aux;
208 {
209 struct zsc_softc *zsc = (void *) self;
210 struct sbus_attach_args *sa = aux;
211 bus_space_handle_t bh;
212 int zs_unit = zsc->zsc_dev.dv_unit;
213
214 if (sa->sa_nintr == 0) {
215 printf(" no interrupt lines\n");
216 return;
217 }
218
219 /* Use the mapping setup by the Sun PROM if possible. */
220 if (zsaddr[zs_unit] == NULL) {
221 /* Only map registers once. */
222 if (sa->sa_npromvaddrs) {
223 /*
224 * We're converting from a 32-bit pointer to a 64-bit
225 * pointer. Since the 32-bit entity is negative, but
226 * the kernel is still mapped into the lower 4GB
227 * range, this needs to be zero-extended.
228 *
229 * XXXXX If we map the kernel and devices into the
230 * high 4GB range, this needs to be changed to
231 * sign-extend the address.
232 */
233 sparc_promaddr_to_handle(sa->sa_bustag,
234 sa->sa_promvaddrs[0], &bh);
235
236 } else {
237
238 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
239 sa->sa_offset,
240 sa->sa_size,
241 BUS_SPACE_MAP_LINEAR,
242 &bh) != 0) {
243 printf("%s @ sbus: cannot map registers\n",
244 self->dv_xname);
245 return;
246 }
247 }
248 zsaddr[zs_unit] = (struct zsdevice *)
249 bus_space_vaddr(sa->sa_bustag, bh);
250 }
251 zsc->zsc_bustag = sa->sa_bustag;
252 zsc->zsc_dmatag = sa->sa_dmatag;
253 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
254 zsc->zsc_node = sa->sa_node;
255 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
256 }
257
258 /*
259 * Attach a found zs.
260 *
261 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
262 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
263 */
264 static void
265 zs_attach(zsc, zsd, pri)
266 struct zsc_softc *zsc;
267 struct zsdevice *zsd;
268 int pri;
269 {
270 struct zsc_attach_args zsc_args;
271 struct zs_chanstate *cs;
272 int s, channel, softpri = PIL_TTY;
273
274 if (zsd == NULL) {
275 printf("configuration incomplete\n");
276 return;
277 }
278
279 printf(" softpri %d\n", softpri);
280
281 /*
282 * Initialize software state for each channel.
283 */
284 for (channel = 0; channel < 2; channel++) {
285 struct zschan *zc;
286 struct device *child;
287
288 zsc_args.channel = channel;
289 cs = &zsc->zsc_cs_store[channel];
290 zsc->zsc_cs[channel] = cs;
291
292 simple_lock_init(&cs->cs_lock);
293 cs->cs_channel = channel;
294 cs->cs_private = NULL;
295 cs->cs_ops = &zsops_null;
296 cs->cs_brg_clk = PCLK / 16;
297
298 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
299
300 zsc_args.consdev = NULL;
301 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
302 zsc->zsc_node,
303 channel);
304
305 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
306 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
307 zsc_args.consdev = &zs_consdev;
308 }
309
310 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
311 zs_conschan_get = zc;
312 }
313 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
314 zs_conschan_put = zc;
315 }
316
317 /* Children need to set cn_dev, etc */
318 cs->cs_reg_csr = &zc->zc_csr;
319 cs->cs_reg_data = &zc->zc_data;
320
321 memcpy(cs->cs_creg, zs_init_reg, 16);
322 memcpy(cs->cs_preg, zs_init_reg, 16);
323
324 /* XXX: Consult PROM properties for this?! */
325 cs->cs_defspeed = zs_get_speed(cs);
326 cs->cs_defcflag = zs_def_cflag;
327
328 /* Make these correspond to cs_defcflag (-crtscts) */
329 cs->cs_rr0_dcd = ZSRR0_DCD;
330 cs->cs_rr0_cts = 0;
331 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
332 cs->cs_wr5_rts = 0;
333
334 /*
335 * Clear the master interrupt enable.
336 * The INTENA is common to both channels,
337 * so just do it on the A channel.
338 */
339 if (channel == 0) {
340 zs_write_reg(cs, 9, 0);
341 }
342
343 /*
344 * Look for a child driver for this channel.
345 * The child attach will setup the hardware.
346 */
347 if (!(child =
348 config_found(&zsc->zsc_dev, (void *)&zsc_args, zs_print))) {
349 /* No sub-driver. Just reset it. */
350 u_char reset = (channel == 0) ?
351 ZSWR9_A_RESET : ZSWR9_B_RESET;
352 s = splzs();
353 zs_write_reg(cs, 9, reset);
354 splx(s);
355 }
356 #if (NKBD > 0) || (NMS > 0)
357 /*
358 * If this was a zstty it has a keyboard
359 * property on it we need to attach the
360 * sunkbd and sunms line disciplines.
361 */
362 if (child
363 && (!strcmp(child->dv_cfdata->cf_name, "zstty"))
364 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
365 struct kbd_ms_tty_attach_args kma;
366 struct zstty_softc {
367 /* The following are the only fields we need here */
368 struct device zst_dev;
369 struct tty *zst_tty;
370 struct zs_chanstate *zst_cs;
371 } *zst = (struct zstty_softc *)child;
372 struct tty *tp;
373
374 kma.kmta_tp = tp = zst->zst_tty;
375 kma.kmta_dev = tp->t_dev;
376 kma.kmta_consdev = zsc_args.consdev;
377
378 /* Attach 'em if we got 'em. */
379 #if (NKBD > 0)
380 if (channel == 0) {
381 kma.kmta_name = "keyboard";
382 config_found(child, (void *)&kma, NULL);
383 }
384 #endif
385 #if (NMS > 0)
386 if (channel == 1) {
387 kma.kmta_name = "mouse";
388 config_found(child, (void *)&kma, NULL);
389 }
390 #endif
391 }
392 #endif
393 }
394
395 /*
396 * Now safe to install interrupt handlers. Note the arguments
397 * to the interrupt handlers aren't used. Note, we only do this
398 * once since both SCCs interrupt at the same level and vector.
399 */
400 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
401 if (!(zsc->zsc_softintr = softintr_establish(softpri, zssoft, zsc)))
402 panic("zsattach: could not establish soft interrupt");
403
404 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
405 zsc->zsc_dev.dv_xname, "intr");
406
407
408 /*
409 * Set the master interrupt enable and interrupt vector.
410 * (common to both channels, do it on A)
411 */
412 cs = zsc->zsc_cs[0];
413 s = splhigh();
414 /* interrupt vector */
415 zs_write_reg(cs, 2, zs_init_reg[2]);
416 /* master interrupt control (enable) */
417 zs_write_reg(cs, 9, zs_init_reg[9]);
418 splx(s);
419
420 }
421
422 static int
423 zs_print(aux, name)
424 void *aux;
425 const char *name;
426 {
427 struct zsc_attach_args *args = aux;
428
429 if (name != NULL)
430 aprint_normal("%s: ", name);
431
432 if (args->channel != -1)
433 aprint_normal(" channel %d", args->channel);
434
435 return (UNCONF);
436 }
437
438 /* Deprecate this? */
439 static volatile int zssoftpending;
440
441 static int
442 zshard(arg)
443 void *arg;
444 {
445 struct zsc_softc *zsc = (struct zsc_softc *)arg;
446 int rr3, rval;
447
448 rval = 0;
449 while ((rr3 = zsc_intr_hard(zsc))) {
450 /* Count up the interrupts. */
451 rval |= rr3;
452 zsc->zsc_intrcnt.ev_count++;
453 }
454 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
455 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
456 zsc->zsc_softintr) {
457 zssoftpending = PIL_TTY;
458 softintr_schedule(zsc->zsc_softintr);
459 }
460 return (rval);
461 }
462
463 int
464 zscheckintr(arg)
465 void *arg;
466 {
467 struct zsc_softc *zsc;
468 int unit, rval;
469
470 rval = 0;
471 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
472
473 zsc = zs_cd.cd_devs[unit];
474 if (zsc == NULL)
475 continue;
476 rval = (zshard((void *)zsc) || rval);
477 }
478 return (rval);
479 }
480
481
482 /*
483 * We need this only for TTY_DEBUG purposes.
484 */
485 static void
486 zssoft(arg)
487 void *arg;
488 {
489 struct zsc_softc *zsc = (struct zsc_softc *)arg;
490 int s;
491
492 /* Make sure we call the tty layer at spltty. */
493 s = spltty();
494 zssoftpending = 0;
495 (void)zsc_intr_soft(zsc);
496 #ifdef TTY_DEBUG
497 {
498 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
499 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
500 if (zst0->zst_overflows || zst1->zst_overflows ) {
501 struct trapframe *frame = (struct trapframe *)arg;
502
503 printf("zs silo overflow from %p\n",
504 (long)frame->tf_pc);
505 }
506 }
507 #endif
508 splx(s);
509 }
510
511
512 /*
513 * Compute the current baud rate given a ZS channel.
514 */
515 static int
516 zs_get_speed(cs)
517 struct zs_chanstate *cs;
518 {
519 int tconst;
520
521 tconst = zs_read_reg(cs, 12);
522 tconst |= zs_read_reg(cs, 13) << 8;
523 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
524 }
525
526 /*
527 * MD functions for setting the baud rate and control modes.
528 */
529 int
530 zs_set_speed(cs, bps)
531 struct zs_chanstate *cs;
532 int bps; /* bits per second */
533 {
534 int tconst, real_bps;
535
536 if (bps == 0)
537 return (0);
538
539 #ifdef DIAGNOSTIC
540 if (cs->cs_brg_clk == 0)
541 panic("zs_set_speed");
542 #endif
543
544 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
545 if (tconst < 0)
546 return (EINVAL);
547
548 /* Convert back to make sure we can do it. */
549 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
550
551 /* XXX - Allow some tolerance here? */
552 if (real_bps != bps)
553 return (EINVAL);
554
555 cs->cs_preg[12] = tconst;
556 cs->cs_preg[13] = tconst >> 8;
557
558 /* Caller will stuff the pending registers. */
559 return (0);
560 }
561
562 int
563 zs_set_modes(cs, cflag)
564 struct zs_chanstate *cs;
565 int cflag; /* bits per second */
566 {
567 int s;
568
569 /*
570 * Output hardware flow control on the chip is horrendous:
571 * if carrier detect drops, the receiver is disabled, and if
572 * CTS drops, the transmitter is stoped IN MID CHARACTER!
573 * Therefore, NEVER set the HFC bit, and instead use the
574 * status interrupt to detect CTS changes.
575 */
576 s = splzs();
577 cs->cs_rr0_pps = 0;
578 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
579 cs->cs_rr0_dcd = 0;
580 if ((cflag & MDMBUF) == 0)
581 cs->cs_rr0_pps = ZSRR0_DCD;
582 } else
583 cs->cs_rr0_dcd = ZSRR0_DCD;
584 if ((cflag & CRTSCTS) != 0) {
585 cs->cs_wr5_dtr = ZSWR5_DTR;
586 cs->cs_wr5_rts = ZSWR5_RTS;
587 cs->cs_rr0_cts = ZSRR0_CTS;
588 } else if ((cflag & CDTRCTS) != 0) {
589 cs->cs_wr5_dtr = 0;
590 cs->cs_wr5_rts = ZSWR5_DTR;
591 cs->cs_rr0_cts = ZSRR0_CTS;
592 } else if ((cflag & MDMBUF) != 0) {
593 cs->cs_wr5_dtr = 0;
594 cs->cs_wr5_rts = ZSWR5_DTR;
595 cs->cs_rr0_cts = ZSRR0_DCD;
596 } else {
597 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
598 cs->cs_wr5_rts = 0;
599 cs->cs_rr0_cts = 0;
600 }
601 splx(s);
602
603 /* Caller will stuff the pending registers. */
604 return (0);
605 }
606
607
608 /*
609 * Read or write the chip with suitable delays.
610 */
611
612 u_char
613 zs_read_reg(cs, reg)
614 struct zs_chanstate *cs;
615 u_char reg;
616 {
617 u_char val;
618
619 *cs->cs_reg_csr = reg;
620 ZS_DELAY();
621 val = *cs->cs_reg_csr;
622 ZS_DELAY();
623 return (val);
624 }
625
626 void
627 zs_write_reg(cs, reg, val)
628 struct zs_chanstate *cs;
629 u_char reg, val;
630 {
631 *cs->cs_reg_csr = reg;
632 ZS_DELAY();
633 *cs->cs_reg_csr = val;
634 ZS_DELAY();
635 }
636
637 u_char
638 zs_read_csr(cs)
639 struct zs_chanstate *cs;
640 {
641 u_char val;
642
643 val = *cs->cs_reg_csr;
644 ZS_DELAY();
645 return (val);
646 }
647
648 void zs_write_csr(cs, val)
649 struct zs_chanstate *cs;
650 u_char val;
651 {
652 *cs->cs_reg_csr = val;
653 ZS_DELAY();
654 }
655
656 u_char zs_read_data(cs)
657 struct zs_chanstate *cs;
658 {
659 u_char val;
660
661 val = *cs->cs_reg_data;
662 ZS_DELAY();
663 return (val);
664 }
665
666 void zs_write_data(cs, val)
667 struct zs_chanstate *cs;
668 u_char val;
669 {
670 *cs->cs_reg_data = val;
671 ZS_DELAY();
672 }
673
674 /****************************************************************
675 * Console support functions (Sun specific!)
676 * Note: this code is allowed to know about the layout of
677 * the chip registers, and uses that to keep things simple.
678 * XXX - I think I like the mvme167 code better. -gwr
679 ****************************************************************/
680
681 extern void Debugger __P((void));
682
683 /*
684 * Handle user request to enter kernel debugger.
685 */
686 void
687 zs_abort(cs)
688 struct zs_chanstate *cs;
689 {
690 volatile struct zschan *zc = zs_conschan_get;
691 int rr0;
692
693 /* Wait for end of break to avoid PROM abort. */
694 /* XXX - Limit the wait? */
695 do {
696 rr0 = zc->zc_csr;
697 ZS_DELAY();
698 } while (rr0 & ZSRR0_BREAK);
699
700 #if defined(KGDB)
701 zskgdb(cs);
702 #elif defined(DDB)
703 {
704 extern int db_active;
705
706 if (!db_active)
707 Debugger();
708 else
709 /* Debugger is probably hozed */
710 callrom();
711 }
712 #else
713 printf("stopping on keyboard abort\n");
714 callrom();
715 #endif
716 }
717
718
719 /*
720 * Polled input char.
721 */
722 int
723 zs_getc(arg)
724 void *arg;
725 {
726 volatile struct zschan *zc = arg;
727 int s, c, rr0;
728
729 s = splhigh();
730 /* Wait for a character to arrive. */
731 do {
732 rr0 = zc->zc_csr;
733 ZS_DELAY();
734 } while ((rr0 & ZSRR0_RX_READY) == 0);
735
736 c = zc->zc_data;
737 ZS_DELAY();
738 splx(s);
739
740 /*
741 * This is used by the kd driver to read scan codes,
742 * so don't translate '\r' ==> '\n' here...
743 */
744 return (c);
745 }
746
747 /*
748 * Polled output char.
749 */
750 void
751 zs_putc(arg, c)
752 void *arg;
753 int c;
754 {
755 volatile struct zschan *zc = arg;
756 int s, rr0;
757
758 s = splhigh();
759
760 /* Wait for transmitter to become ready. */
761 do {
762 rr0 = zc->zc_csr;
763 ZS_DELAY();
764 } while ((rr0 & ZSRR0_TX_READY) == 0);
765
766 /*
767 * Send the next character.
768 * Now you'd think that this could be followed by a ZS_DELAY()
769 * just like all the other chip accesses, but it turns out that
770 * the `transmit-ready' interrupt isn't de-asserted until
771 * some period of time after the register write completes
772 * (more than a couple instructions). So to avoid stray
773 * interrupts we put in the 2us delay regardless of CPU model.
774 */
775 zc->zc_data = c;
776 delay(2);
777
778 splx(s);
779 }
780
781 /*****************************************************************/
782
783
784
785
786 /*
787 * Polled console input putchar.
788 */
789 static int
790 zscngetc(dev)
791 dev_t dev;
792 {
793 return (zs_getc(zs_conschan_get));
794 }
795
796 /*
797 * Polled console output putchar.
798 */
799 static void
800 zscnputc(dev, c)
801 dev_t dev;
802 int c;
803 {
804 zs_putc(zs_conschan_put, c);
805 }
806
807 int swallow_zsintrs;
808
809 static void
810 zscnpollc(dev, on)
811 dev_t dev;
812 int on;
813 {
814 /*
815 * Need to tell zs driver to acknowledge all interrupts or we get
816 * annoying spurious interrupt messages. This is because mucking
817 * with spl() levels during polling does not prevent interrupts from
818 * being generated.
819 */
820
821 if (on) swallow_zsintrs++;
822 else swallow_zsintrs--;
823 }
824
825 int
826 zs_console_flags(promunit, node, channel)
827 int promunit;
828 int node;
829 int channel;
830 {
831 int cookie, flags = 0;
832 char buf[255];
833
834 /*
835 * We'll just do the OBP grovelling down here since that's
836 * the only type of firmware we support.
837 */
838
839 /* Default to channel 0 if there are no explicit prom args */
840 cookie = 0;
841 if (node == OF_instance_to_package(OF_stdin())) {
842 if (prom_getoption("input-device", buf, sizeof buf) != 0 &&
843 strcmp("ttyb", buf) == 0)
844 cookie = 1;
845
846 if (channel == cookie)
847 flags |= ZS_HWFLAG_CONSOLE_INPUT;
848 }
849
850 if (node == OF_instance_to_package(OF_stdout())) {
851 if (prom_getoption("output-device", buf, sizeof buf) != 0 &&
852 strcmp("ttyb", buf) == 0)
853 cookie = 1;
854
855 if (channel == cookie)
856 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
857 }
858
859 return (flags);
860 }
861
862