zs.c revision 1.62.34.2 1 /* $NetBSD: zs.c,v 1.62.34.2 2007/12/08 18:17:57 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.62.34.2 2007/12/08 18:17:57 mjf Exp $");
49
50 #include "opt_ddb.h"
51 #include "opt_kgdb.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/conf.h>
56 #include <sys/device.h>
57 #include <sys/file.h>
58 #include <sys/ioctl.h>
59 #include <sys/kernel.h>
60 #include <sys/proc.h>
61 #include <sys/tty.h>
62 #include <sys/time.h>
63 #include <sys/syslog.h>
64 #include <sys/intr.h>
65
66 #include <machine/autoconf.h>
67 #include <machine/openfirm.h>
68 #include <machine/cpu.h>
69 #include <machine/eeprom.h>
70 #include <machine/psl.h>
71 #include <machine/z8530var.h>
72
73 #include <dev/cons.h>
74 #include <dev/ic/z8530reg.h>
75 #include <dev/sun/kbd_ms_ttyvar.h>
76 #include <ddb/db_output.h>
77
78 #include <sparc64/dev/cons.h>
79
80 #include "kbd.h" /* NKBD */
81 #include "ms.h" /* NMS */
82 #include "zs.h" /* NZS */
83
84 /* Make life easier for the initialized arrays here. */
85 #if NZS < 3
86 #undef NZS
87 #define NZS 3
88 #endif
89
90 /*
91 * Some warts needed by z8530tty.c -
92 * The default parity REALLY needs to be the same as the PROM uses,
93 * or you can not see messages done with printf during boot-up...
94 */
95 int zs_def_cflag = (CREAD | CS8 | HUPCL);
96
97 /*
98 * The Sun provides a 4.9152 MHz clock to the ZS chips.
99 */
100 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
101
102 #define ZS_DELAY()
103
104 /* The layout of this is hardware-dependent (padding, order). */
105 struct zschan {
106 volatile u_char zc_csr; /* ctrl,status, and indirect access */
107 u_char zc_xxx0;
108 volatile u_char zc_data; /* data */
109 u_char zc_xxx1;
110 };
111 struct zsdevice {
112 /* Yes, they are backwards. */
113 struct zschan zs_chan_b;
114 struct zschan zs_chan_a;
115 };
116
117 /* ZS channel used as the console device (if any) */
118 void *zs_conschan_get, *zs_conschan_put;
119
120 /* Saved PROM mappings */
121 static struct zsdevice *zsaddr[NZS];
122
123 static u_char zs_init_reg[16] = {
124 0, /* 0: CMD (reset, etc.) */
125 0, /* 1: No interrupts yet. */
126 0, /* 2: IVECT */
127 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
128 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
129 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
130 0, /* 6: TXSYNC/SYNCLO */
131 0, /* 7: RXSYNC/SYNCHI */
132 0, /* 8: alias for data port */
133 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
134 0, /*10: Misc. TX/RX control bits */
135 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
136 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
137 0, /*13: BAUDHI (default=9600) */
138 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
139 ZSWR15_BREAK_IE,
140 };
141
142 /* Console ops */
143 static int zscngetc(dev_t);
144 static void zscnputc(dev_t, int);
145 static void zscnpollc(dev_t, int);
146
147 struct consdev zs_consdev = {
148 .cn_getc = zscngetc,
149 .cn_putc = zscnputc,
150 .cn_pollc = zscnpollc,
151 };
152
153
154 /****************************************************************
155 * Autoconfig
156 ****************************************************************/
157
158 /* Definition of the driver for autoconfig. */
159 static int zs_match_sbus(struct device *, struct cfdata *, void *);
160 static void zs_attach_sbus(struct device *, struct device *, void *);
161
162 static void zs_attach(struct zsc_softc *, struct zsdevice *, int);
163 static int zs_print(void *, const char *);
164
165 CFATTACH_DECL(zs, sizeof(struct zsc_softc),
166 zs_match_sbus, zs_attach_sbus, NULL, NULL);
167
168 extern struct cfdriver zs_cd;
169
170 /* Interrupt handlers. */
171 int zscheckintr(void *);
172 static int zshard(void *);
173 static void zssoft(void *);
174
175 static int zs_get_speed(struct zs_chanstate *);
176
177 /* Console device support */
178 static int zs_console_flags(int, int, int);
179
180 /* Power management hooks */
181 int zs_enable(struct zs_chanstate *);
182 void zs_disable(struct zs_chanstate *);
183
184 /* from dev/ic/z8530tty.c */
185 struct tty *zstty_get_tty_from_dev(struct device *);
186
187 /*
188 * Is the zs chip present?
189 */
190 static int
191 zs_match_sbus(struct device *parent, struct cfdata *cf, void *aux)
192 {
193 struct sbus_attach_args *sa = aux;
194
195 if (strcmp(cf->cf_name, sa->sa_name) != 0)
196 return (0);
197
198 return (1);
199 }
200
201 static void
202 zs_attach_sbus(struct device *parent, struct device *self, void *aux)
203 {
204 struct zsc_softc *zsc = (void *) self;
205 struct sbus_attach_args *sa = aux;
206 bus_space_handle_t bh;
207 int zs_unit = device_unit(&zsc->zsc_dev);
208
209 if (sa->sa_nintr == 0) {
210 printf(" no interrupt lines\n");
211 return;
212 }
213
214 /* Use the mapping setup by the Sun PROM if possible. */
215 if (zsaddr[zs_unit] == NULL) {
216 /* Only map registers once. */
217 if (sa->sa_npromvaddrs) {
218 /*
219 * We're converting from a 32-bit pointer to a 64-bit
220 * pointer. Since the 32-bit entity is negative, but
221 * the kernel is still mapped into the lower 4GB
222 * range, this needs to be zero-extended.
223 *
224 * XXXXX If we map the kernel and devices into the
225 * high 4GB range, this needs to be changed to
226 * sign-extend the address.
227 */
228 sparc_promaddr_to_handle(sa->sa_bustag,
229 sa->sa_promvaddrs[0], &bh);
230
231 } else {
232
233 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
234 sa->sa_offset,
235 sa->sa_size,
236 BUS_SPACE_MAP_LINEAR,
237 &bh) != 0) {
238 printf("%s @ sbus: cannot map registers\n",
239 self->dv_xname);
240 return;
241 }
242 }
243 zsaddr[zs_unit] = (struct zsdevice *)
244 bus_space_vaddr(sa->sa_bustag, bh);
245 }
246 zsc->zsc_bustag = sa->sa_bustag;
247 zsc->zsc_dmatag = sa->sa_dmatag;
248 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
249 zsc->zsc_node = sa->sa_node;
250 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
251 }
252
253 /*
254 * Attach a found zs.
255 *
256 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
257 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
258 */
259 static void
260 zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri)
261 {
262 struct zsc_attach_args zsc_args;
263 struct zs_chanstate *cs;
264 int s, channel;
265
266 if (zsd == NULL) {
267 printf("configuration incomplete\n");
268 return;
269 }
270
271 /*
272 * Initialize software state for each channel.
273 */
274 for (channel = 0; channel < 2; channel++) {
275 struct zschan *zc;
276 struct device *child;
277
278 zsc_args.channel = channel;
279 cs = &zsc->zsc_cs_store[channel];
280 zsc->zsc_cs[channel] = cs;
281
282 zs_lock_init(cs);
283 cs->cs_channel = channel;
284 cs->cs_private = NULL;
285 cs->cs_ops = &zsops_null;
286 cs->cs_brg_clk = PCLK / 16;
287
288 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
289
290 zsc_args.consdev = NULL;
291 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
292 zsc->zsc_node,
293 channel);
294
295 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
296 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
297 zsc_args.consdev = &zs_consdev;
298 }
299
300 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
301 zs_conschan_get = zc;
302 }
303 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
304 zs_conschan_put = zc;
305 }
306
307 /* Children need to set cn_dev, etc */
308 cs->cs_reg_csr = &zc->zc_csr;
309 cs->cs_reg_data = &zc->zc_data;
310
311 memcpy(cs->cs_creg, zs_init_reg, 16);
312 memcpy(cs->cs_preg, zs_init_reg, 16);
313
314 /* XXX: Consult PROM properties for this?! */
315 cs->cs_defspeed = zs_get_speed(cs);
316 cs->cs_defcflag = zs_def_cflag;
317
318 /* Make these correspond to cs_defcflag (-crtscts) */
319 cs->cs_rr0_dcd = ZSRR0_DCD;
320 cs->cs_rr0_cts = 0;
321 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
322 cs->cs_wr5_rts = 0;
323
324 /*
325 * Clear the master interrupt enable.
326 * The INTENA is common to both channels,
327 * so just do it on the A channel.
328 */
329 if (channel == 0) {
330 zs_write_reg(cs, 9, 0);
331 }
332
333 /*
334 * Look for a child driver for this channel.
335 * The child attach will setup the hardware.
336 */
337 child = config_found(&zsc->zsc_dev, (void *)&zsc_args,
338 zs_print);
339 if (child == NULL) {
340 /* No sub-driver. Just reset it. */
341 u_char reset = (channel == 0) ?
342 ZSWR9_A_RESET : ZSWR9_B_RESET;
343 s = splzs();
344 zs_write_reg(cs, 9, reset);
345 splx(s);
346 }
347 #if (NKBD > 0) || (NMS > 0)
348 /*
349 * If this was a zstty it has a keyboard
350 * property on it we need to attach the
351 * sunkbd and sunms line disciplines.
352 */
353 if (child
354 && (device_is_a(child, "zstty"))
355 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
356 struct kbd_ms_tty_attach_args kma;
357 struct tty *tp;
358
359 kma.kmta_tp = tp = zstty_get_tty_from_dev(child);
360 kma.kmta_dev = tp->t_dev;
361 kma.kmta_consdev = zsc_args.consdev;
362
363 /* Attach 'em if we got 'em. */
364 #if (NKBD > 0)
365 if (channel == 0) {
366 kma.kmta_name = "keyboard";
367 config_found(child, (void *)&kma, NULL);
368 }
369 #endif
370 #if (NMS > 0)
371 if (channel == 1) {
372 kma.kmta_name = "mouse";
373 config_found(child, (void *)&kma, NULL);
374 }
375 #endif
376 }
377 #endif
378 }
379
380 /*
381 * Now safe to install interrupt handlers. Note the arguments
382 * to the interrupt handlers aren't used. Note, we only do this
383 * once since both SCCs interrupt at the same level and vector.
384 */
385 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
386 if (!(zsc->zsc_softintr = softint_establish(SOFTINT_SERIAL, zssoft, zsc)))
387 panic("zsattach: could not establish soft interrupt");
388
389 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
390 zsc->zsc_dev.dv_xname, "intr");
391
392
393 /*
394 * Set the master interrupt enable and interrupt vector.
395 * (common to both channels, do it on A)
396 */
397 cs = zsc->zsc_cs[0];
398 s = splhigh();
399 /* interrupt vector */
400 zs_write_reg(cs, 2, zs_init_reg[2]);
401 /* master interrupt control (enable) */
402 zs_write_reg(cs, 9, zs_init_reg[9]);
403 splx(s);
404
405 }
406
407 static int
408 zs_print(void *aux, const char *name)
409 {
410 struct zsc_attach_args *args = aux;
411
412 if (name != NULL)
413 aprint_normal("%s: ", name);
414
415 if (args->channel != -1)
416 aprint_normal(" channel %d", args->channel);
417
418 return (UNCONF);
419 }
420
421 /* Deprecate this? */
422 static volatile int zssoftpending;
423
424 static int
425 zshard(void *arg)
426 {
427 struct zsc_softc *zsc = (struct zsc_softc *)arg;
428 int rr3, rval;
429
430 rval = 0;
431 while ((rr3 = zsc_intr_hard(zsc))) {
432 /* Count up the interrupts. */
433 rval |= rr3;
434 zsc->zsc_intrcnt.ev_count++;
435 }
436 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
437 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
438 zsc->zsc_softintr) {
439 zssoftpending = PIL_TTY;
440 softint_schedule(zsc->zsc_softintr);
441 }
442 return (rval);
443 }
444
445 int
446 zscheckintr(void *arg)
447 {
448 struct zsc_softc *zsc;
449 int unit, rval;
450
451 rval = 0;
452 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
453
454 zsc = zs_cd.cd_devs[unit];
455 if (zsc == NULL)
456 continue;
457 rval = (zshard((void *)zsc) || rval);
458 }
459 return (rval);
460 }
461
462
463 /*
464 * We need this only for TTY_DEBUG purposes.
465 */
466 static void
467 zssoft(void *arg)
468 {
469 struct zsc_softc *zsc = (struct zsc_softc *)arg;
470 int s;
471
472 /* Make sure we call the tty layer at spltty. */
473 s = spltty();
474 zssoftpending = 0;
475 (void)zsc_intr_soft(zsc);
476 #ifdef TTY_DEBUG
477 {
478 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
479 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
480 if (zst0->zst_overflows || zst1->zst_overflows ) {
481 struct trapframe *frame = (struct trapframe *)arg;
482
483 printf("zs silo overflow from %p\n",
484 (long)frame->tf_pc);
485 }
486 }
487 #endif
488 splx(s);
489 }
490
491
492 /*
493 * Compute the current baud rate given a ZS channel.
494 */
495 static int
496 zs_get_speed(struct zs_chanstate *cs)
497 {
498 int tconst;
499
500 tconst = zs_read_reg(cs, 12);
501 tconst |= zs_read_reg(cs, 13) << 8;
502 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
503 }
504
505 /*
506 * MD functions for setting the baud rate and control modes.
507 */
508 int
509 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
510 {
511 int tconst, real_bps;
512
513 if (bps == 0)
514 return (0);
515
516 #ifdef DIAGNOSTIC
517 if (cs->cs_brg_clk == 0)
518 panic("zs_set_speed");
519 #endif
520
521 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
522 if (tconst < 0)
523 return (EINVAL);
524
525 /* Convert back to make sure we can do it. */
526 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
527
528 /* XXX - Allow some tolerance here? */
529 if (real_bps != bps)
530 return (EINVAL);
531
532 cs->cs_preg[12] = tconst;
533 cs->cs_preg[13] = tconst >> 8;
534
535 /* Caller will stuff the pending registers. */
536 return (0);
537 }
538
539 int
540 zs_set_modes(struct zs_chanstate *cs, int cflag)
541 {
542 int s;
543
544 /*
545 * Output hardware flow control on the chip is horrendous:
546 * if carrier detect drops, the receiver is disabled, and if
547 * CTS drops, the transmitter is stoped IN MID CHARACTER!
548 * Therefore, NEVER set the HFC bit, and instead use the
549 * status interrupt to detect CTS changes.
550 */
551 s = splzs();
552 cs->cs_rr0_pps = 0;
553 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
554 cs->cs_rr0_dcd = 0;
555 if ((cflag & MDMBUF) == 0)
556 cs->cs_rr0_pps = ZSRR0_DCD;
557 } else
558 cs->cs_rr0_dcd = ZSRR0_DCD;
559 if ((cflag & CRTSCTS) != 0) {
560 cs->cs_wr5_dtr = ZSWR5_DTR;
561 cs->cs_wr5_rts = ZSWR5_RTS;
562 cs->cs_rr0_cts = ZSRR0_CTS;
563 } else if ((cflag & CDTRCTS) != 0) {
564 cs->cs_wr5_dtr = 0;
565 cs->cs_wr5_rts = ZSWR5_DTR;
566 cs->cs_rr0_cts = ZSRR0_CTS;
567 } else if ((cflag & MDMBUF) != 0) {
568 cs->cs_wr5_dtr = 0;
569 cs->cs_wr5_rts = ZSWR5_DTR;
570 cs->cs_rr0_cts = ZSRR0_DCD;
571 } else {
572 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
573 cs->cs_wr5_rts = 0;
574 cs->cs_rr0_cts = 0;
575 }
576 splx(s);
577
578 /* Caller will stuff the pending registers. */
579 return (0);
580 }
581
582
583 /*
584 * Read or write the chip with suitable delays.
585 */
586
587 u_char
588 zs_read_reg(struct zs_chanstate *cs, u_char reg)
589 {
590 u_char val;
591
592 *cs->cs_reg_csr = reg;
593 ZS_DELAY();
594 val = *cs->cs_reg_csr;
595 ZS_DELAY();
596 return (val);
597 }
598
599 void
600 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
601 {
602 *cs->cs_reg_csr = reg;
603 ZS_DELAY();
604 *cs->cs_reg_csr = val;
605 ZS_DELAY();
606 }
607
608 u_char
609 zs_read_csr(struct zs_chanstate *cs)
610 {
611 u_char val;
612
613 val = *cs->cs_reg_csr;
614 ZS_DELAY();
615 return (val);
616 }
617
618 void
619 zs_write_csr(struct zs_chanstate *cs, u_char val)
620 {
621 *cs->cs_reg_csr = val;
622 ZS_DELAY();
623 }
624
625 u_char
626 zs_read_data(struct zs_chanstate *cs)
627 {
628 u_char val;
629
630 val = *cs->cs_reg_data;
631 ZS_DELAY();
632 return (val);
633 }
634
635 void
636 zs_write_data(struct zs_chanstate *cs, u_char val)
637 {
638 *cs->cs_reg_data = val;
639 ZS_DELAY();
640 }
641
642 /****************************************************************
643 * Console support functions (Sun specific!)
644 * Note: this code is allowed to know about the layout of
645 * the chip registers, and uses that to keep things simple.
646 * XXX - I think I like the mvme167 code better. -gwr
647 ****************************************************************/
648
649 extern void Debugger(void);
650
651 /*
652 * Handle user request to enter kernel debugger.
653 */
654 void
655 zs_abort(struct zs_chanstate *cs)
656 {
657 volatile struct zschan *zc = zs_conschan_get;
658 int rr0;
659
660 /* Wait for end of break to avoid PROM abort. */
661 /* XXX - Limit the wait? */
662 do {
663 rr0 = zc->zc_csr;
664 ZS_DELAY();
665 } while (rr0 & ZSRR0_BREAK);
666
667 #if defined(KGDB)
668 zskgdb(cs);
669 #elif defined(DDB)
670 {
671 extern int db_active;
672
673 if (!db_active)
674 Debugger();
675 else
676 /* Debugger is probably hozed */
677 callrom();
678 }
679 #else
680 printf("stopping on keyboard abort\n");
681 callrom();
682 #endif
683 }
684
685
686 /*
687 * Polled input char.
688 */
689 int
690 zs_getc(void *arg)
691 {
692 volatile struct zschan *zc = arg;
693 int s, c, rr0;
694
695 s = splhigh();
696 /* Wait for a character to arrive. */
697 do {
698 rr0 = zc->zc_csr;
699 ZS_DELAY();
700 } while ((rr0 & ZSRR0_RX_READY) == 0);
701
702 c = zc->zc_data;
703 ZS_DELAY();
704 splx(s);
705
706 /*
707 * This is used by the kd driver to read scan codes,
708 * so don't translate '\r' ==> '\n' here...
709 */
710 return (c);
711 }
712
713 /*
714 * Polled output char.
715 */
716 void
717 zs_putc(void *arg, int c)
718 {
719 volatile struct zschan *zc = arg;
720 int s, rr0;
721
722 s = splhigh();
723
724 /* Wait for transmitter to become ready. */
725 do {
726 rr0 = zc->zc_csr;
727 ZS_DELAY();
728 } while ((rr0 & ZSRR0_TX_READY) == 0);
729
730 /*
731 * Send the next character.
732 * Now you'd think that this could be followed by a ZS_DELAY()
733 * just like all the other chip accesses, but it turns out that
734 * the `transmit-ready' interrupt isn't de-asserted until
735 * some period of time after the register write completes
736 * (more than a couple instructions). So to avoid stray
737 * interrupts we put in the 2us delay regardless of CPU model.
738 */
739 zc->zc_data = c;
740 delay(2);
741
742 splx(s);
743 }
744
745 /*****************************************************************/
746
747
748
749
750 /*
751 * Polled console input putchar.
752 */
753 static int
754 zscngetc(dev_t dev)
755 {
756 return (zs_getc(zs_conschan_get));
757 }
758
759 /*
760 * Polled console output putchar.
761 */
762 static void
763 zscnputc(dev_t dev, int c)
764 {
765 zs_putc(zs_conschan_put, c);
766 }
767
768 int swallow_zsintrs;
769
770 static void
771 zscnpollc(dev_t dev, int on)
772 {
773 /*
774 * Need to tell zs driver to acknowledge all interrupts or we get
775 * annoying spurious interrupt messages. This is because mucking
776 * with spl() levels during polling does not prevent interrupts from
777 * being generated.
778 */
779
780 if (on) swallow_zsintrs++;
781 else swallow_zsintrs--;
782 }
783
784 int
785 zs_console_flags(int promunit, int node, int channel)
786 {
787 int cookie, flags = 0;
788 char buf[255];
789
790 /*
791 * We'll just do the OBP grovelling down here since that's
792 * the only type of firmware we support.
793 */
794
795 /* Default to channel 0 if there are no explicit prom args */
796 cookie = 0;
797 if (node == prom_instance_to_package(prom_stdin())) {
798 if (prom_getoption("input-device", buf, sizeof buf) == 0 &&
799 strcmp("ttyb", buf) == 0)
800 cookie = 1;
801
802 if (channel == cookie)
803 flags |= ZS_HWFLAG_CONSOLE_INPUT;
804 }
805
806 if (node == prom_instance_to_package(prom_stdout())) {
807 if (prom_getoption("output-device", buf, sizeof buf) == 0 &&
808 strcmp("ttyb", buf) == 0)
809 cookie = 1;
810
811 if (channel == cookie)
812 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
813 }
814
815 return (flags);
816 }
817
818