zs.c revision 1.79 1 /* $NetBSD: zs.c,v 1.79 2022/10/26 23:38:08 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Zilog Z8530 Dual UART driver (machine-dependent part)
34 *
35 * Runs two serial lines per chip using slave drivers.
36 * Plain tty/async lines use the zs_async slave.
37 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.79 2022/10/26 23:38:08 riastradh Exp $");
42
43 #include "opt_ddb.h"
44 #include "opt_kgdb.h"
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/conf.h>
49 #include <sys/device.h>
50 #include <sys/file.h>
51 #include <sys/ioctl.h>
52 #include <sys/kernel.h>
53 #include <sys/proc.h>
54 #include <sys/tty.h>
55 #include <sys/time.h>
56 #include <sys/syslog.h>
57 #include <sys/intr.h>
58
59 #include <machine/autoconf.h>
60 #include <machine/openfirm.h>
61 #include <machine/cpu.h>
62 #include <machine/eeprom.h>
63 #include <machine/psl.h>
64 #include <machine/z8530var.h>
65
66 #include <dev/cons.h>
67 #include <dev/ic/z8530reg.h>
68 #include <dev/sun/kbd_ms_ttyvar.h>
69
70 #include <ddb/db_active.h>
71 #include <ddb/db_output.h>
72
73 #include <dev/sbus/sbusvar.h>
74 #include <sparc64/dev/fhcvar.h>
75 #include <sparc64/dev/cons.h>
76
77 #include "ioconf.h"
78 #include "kbd.h" /* NKBD */
79 #include "ms.h" /* NMS */
80 #include "zs.h" /* NZS */
81
82 /* Make life easier for the initialized arrays here. */
83 #if NZS < 3
84 #undef NZS
85 #define NZS 3
86 #endif
87
88 /*
89 * Some warts needed by z8530tty.c -
90 * The default parity REALLY needs to be the same as the PROM uses,
91 * or you can not see messages done with printf during boot-up...
92 */
93 int zs_def_cflag = (CREAD | CS8 | HUPCL);
94
95 /*
96 * The Sun provides a 4.9152 MHz clock to the ZS chips.
97 */
98 #define PCLK (9600 * 512) /* PCLK pin input clock rate */
99
100 #define ZS_DELAY()
101
102 /* The layout of this is hardware-dependent (padding, order). */
103 struct zschan {
104 volatile uint8_t zc_csr; /* ctrl,status, and indirect access */
105 uint8_t zc_xxx0;
106 volatile uint8_t zc_data; /* data */
107 uint8_t zc_xxx1;
108 };
109 struct zsdevice {
110 /* Yes, they are backwards. */
111 struct zschan zs_chan_b;
112 struct zschan zs_chan_a;
113 };
114
115 /* ZS channel used as the console device (if any) */
116 void *zs_conschan_get, *zs_conschan_put;
117
118 /* Saved PROM mappings */
119 static struct zsdevice *zsaddr[NZS];
120
121 static uint8_t zs_init_reg[16] = {
122 0, /* 0: CMD (reset, etc.) */
123 0, /* 1: No interrupts yet. */
124 0, /* 2: IVECT */
125 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
126 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
127 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
128 0, /* 6: TXSYNC/SYNCLO */
129 0, /* 7: RXSYNC/SYNCHI */
130 0, /* 8: alias for data port */
131 ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR,
132 0, /*10: Misc. TX/RX control bits */
133 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
134 ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
135 0, /*13: BAUDHI (default=9600) */
136 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
137 ZSWR15_BREAK_IE,
138 };
139
140 /* Console ops */
141 static int zscngetc(dev_t);
142 static void zscnputc(dev_t, int);
143 static void zscnpollc(dev_t, int);
144
145 struct consdev zs_consdev = {
146 .cn_getc = zscngetc,
147 .cn_putc = zscnputc,
148 .cn_pollc = zscnpollc,
149 };
150
151
152 /****************************************************************
153 * Autoconfig
154 ****************************************************************/
155
156 /* Definition of the driver for autoconfig. */
157 static int zs_match_sbus(device_t, cfdata_t, void *);
158 static void zs_attach_sbus(device_t, device_t, void *);
159
160 static int zs_match_fhc(device_t, cfdata_t, void *);
161 static void zs_attach_fhc(device_t, device_t, void *);
162
163 static void zs_attach(struct zsc_softc *, struct zsdevice *, int);
164 static int zs_print(void *, const char *);
165
166 CFATTACH_DECL_NEW(zs, sizeof(struct zsc_softc),
167 zs_match_sbus, zs_attach_sbus, NULL, NULL);
168
169 CFATTACH_DECL_NEW(zs_fhc, sizeof(struct zsc_softc),
170 zs_match_fhc, zs_attach_fhc, NULL, NULL);
171
172 /* Interrupt handlers. */
173 int zscheckintr(void *);
174 static int zshard(void *);
175 static void zssoft(void *);
176
177 static int zs_get_speed(struct zs_chanstate *);
178
179 /* Console device support */
180 static int zs_console_flags(int, int, int);
181
182 /* Power management hooks */
183 int zs_enable(struct zs_chanstate *);
184 void zs_disable(struct zs_chanstate *);
185
186 /* from dev/ic/z8530tty.c */
187 struct tty *zstty_get_tty_from_dev(device_t);
188
189 /*
190 * Is the zs chip present?
191 */
192 static int
193 zs_match_sbus(device_t parent, cfdata_t cf, void *aux)
194 {
195 struct sbus_attach_args *sa = aux;
196
197 if (strcmp(cf->cf_name, sa->sa_name) != 0)
198 return (0);
199
200 return (1);
201 }
202
203 static int
204 zs_match_fhc(device_t parent, cfdata_t cf, void *aux)
205 {
206 struct fhc_attach_args *fa = aux;
207
208 if (strcmp(cf->cf_name, fa->fa_name) != 0)
209 return (0);
210
211 return (1);
212 }
213
214 static void
215 zs_attach_sbus(device_t parent, device_t self, void *aux)
216 {
217 struct zsc_softc *zsc = device_private(self);
218 struct sbus_attach_args *sa = aux;
219 bus_space_handle_t bh;
220 int zs_unit;
221
222 zsc->zsc_dev = self;
223 zs_unit = device_unit(self);
224
225 if (sa->sa_nintr == 0) {
226 aprint_error(": no interrupt lines\n");
227 return;
228 }
229
230 /* Use the mapping setup by the Sun PROM if possible. */
231 if (zsaddr[zs_unit] == NULL) {
232 /* Only map registers once. */
233 if (sa->sa_npromvaddrs) {
234 /*
235 * We're converting from a 32-bit pointer to a 64-bit
236 * pointer. Since the 32-bit entity is negative, but
237 * the kernel is still mapped into the lower 4GB
238 * range, this needs to be zero-extended.
239 *
240 * XXXXX If we map the kernel and devices into the
241 * high 4GB range, this needs to be changed to
242 * sign-extend the address.
243 */
244 sparc_promaddr_to_handle(sa->sa_bustag,
245 sa->sa_promvaddrs[0], &bh);
246
247 } else {
248
249 if (sbus_bus_map(sa->sa_bustag, sa->sa_slot,
250 sa->sa_offset,
251 sa->sa_size,
252 BUS_SPACE_MAP_LINEAR,
253 &bh) != 0) {
254 aprint_error(": cannot map registers\n");
255 return;
256 }
257 }
258 zsaddr[zs_unit] = bus_space_vaddr(sa->sa_bustag, bh);
259 }
260 zsc->zsc_bustag = sa->sa_bustag;
261 zsc->zsc_dmatag = sa->sa_dmatag;
262 zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2);
263 zsc->zsc_node = sa->sa_node;
264 aprint_normal("\n");
265 zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri);
266 }
267
268 static void
269 zs_attach_fhc(device_t parent, device_t self, void *aux)
270 {
271 struct zsc_softc *zsc = device_private(self);
272 struct fhc_attach_args *fa = aux;
273 bus_space_handle_t bh;
274 int zs_unit;
275
276 zsc->zsc_dev = self;
277 zs_unit = device_unit(self);
278
279 if (fa->fa_nreg < 1 && fa->fa_npromvaddrs < 1) {
280 printf(": no registers\n");
281 return;
282 }
283
284 if (fa->fa_nintr == 0) {
285 aprint_error(": no interrupt lines\n");
286 return;
287 }
288
289 /* Use the mapping setup by the Sun PROM if possible. */
290 if (zsaddr[zs_unit] == NULL) {
291 /* Only map registers once. */
292 if (fa->fa_npromvaddrs) {
293 /*
294 * We're converting from a 32-bit pointer to a 64-bit
295 * pointer. Since the 32-bit entity is negative, but
296 * the kernel is still mapped into the lower 4GB
297 * range, this needs to be zero-extended.
298 *
299 * XXXXX If we map the kernel and devices into the
300 * high 4GB range, this needs to be changed to
301 * sign-extend the address.
302 */
303 sparc_promaddr_to_handle(fa->fa_bustag,
304 fa->fa_promvaddrs[0], &bh);
305
306 } else {
307
308 if (fhc_bus_map(fa->fa_bustag,
309 fa->fa_reg[0].fbr_slot,
310 fa->fa_reg[0].fbr_offset,
311 fa->fa_reg[0].fbr_size,
312 BUS_SPACE_MAP_LINEAR,
313 &bh) != 0) {
314 aprint_error(": cannot map registers\n");
315 return;
316 }
317 }
318 zsaddr[zs_unit] = bus_space_vaddr(fa->fa_bustag, bh);
319 }
320 zsc->zsc_bustag = fa->fa_bustag;
321 zsc->zsc_dmatag = NULL;
322 zsc->zsc_promunit = prom_getpropint(fa->fa_node, "slave", -2);
323 zsc->zsc_node = fa->fa_node;
324 aprint_normal("\n");
325 zs_attach(zsc, zsaddr[zs_unit], fa->fa_intr[0]);
326 }
327
328 /*
329 * Attach a found zs.
330 *
331 * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
332 * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
333 */
334 static void
335 zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri)
336 {
337 struct zsc_attach_args zsc_args;
338 struct zs_chanstate *cs;
339 int channel;
340
341 if (zsd == NULL) {
342 aprint_error(": configuration incomplete\n");
343 return;
344 }
345
346 /*
347 * Initialize software state for each channel.
348 */
349 for (channel = 0; channel < 2; channel++) {
350 struct zschan *zc;
351 device_t child;
352
353 zsc_args.channel = channel;
354 cs = &zsc->zsc_cs_store[channel];
355 zsc->zsc_cs[channel] = cs;
356
357 zs_lock_init(cs);
358 cs->cs_channel = channel;
359 cs->cs_private = NULL;
360 cs->cs_ops = &zsops_null;
361 cs->cs_brg_clk = PCLK / 16;
362
363 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
364
365 zsc_args.consdev = NULL;
366 zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit,
367 zsc->zsc_node,
368 channel);
369
370 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
371 zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV;
372 zsc_args.consdev = &zs_consdev;
373 }
374
375 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
376 zs_conschan_get = zc;
377 }
378 if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
379 zs_conschan_put = zc;
380 }
381
382 /* Children need to set cn_dev, etc */
383 cs->cs_reg_csr = &zc->zc_csr;
384 cs->cs_reg_data = &zc->zc_data;
385
386 memcpy(cs->cs_creg, zs_init_reg, 16);
387 memcpy(cs->cs_preg, zs_init_reg, 16);
388
389 /* XXX: Consult PROM properties for this?! */
390 cs->cs_defspeed = zs_get_speed(cs);
391 cs->cs_defcflag = zs_def_cflag;
392
393 /* Make these correspond to cs_defcflag (-crtscts) */
394 cs->cs_rr0_dcd = ZSRR0_DCD;
395 cs->cs_rr0_cts = 0;
396 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
397 cs->cs_wr5_rts = 0;
398
399 /*
400 * Clear the master interrupt enable.
401 * The INTENA is common to both channels,
402 * so just do it on the A channel.
403 */
404 if (channel == 0) {
405 zs_write_reg(cs, 9, 0);
406 }
407
408 /*
409 * Look for a child driver for this channel.
410 * The child attach will setup the hardware.
411 */
412 child = config_found(zsc->zsc_dev, (void *)&zsc_args,
413 zs_print, CFARGS_NONE);
414 if (child == NULL) {
415 /* No sub-driver. Just reset it. */
416 uint8_t reset = (channel == 0) ?
417 ZSWR9_A_RESET : ZSWR9_B_RESET;
418 zs_lock_chan(cs);
419 zs_write_reg(cs, 9, reset);
420 zs_unlock_chan(cs);
421 }
422 #if (NKBD > 0) || (NMS > 0)
423 /*
424 * If this was a zstty it has a keyboard
425 * property on it we need to attach the
426 * sunkbd and sunms line disciplines.
427 */
428 if (child
429 && (device_is_a(child, "zstty"))
430 && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) {
431 struct kbd_ms_tty_attach_args kma;
432 struct tty *tp;
433
434 kma.kmta_tp = tp = zstty_get_tty_from_dev(child);
435 kma.kmta_dev = tp->t_dev;
436 kma.kmta_consdev = zsc_args.consdev;
437
438 /* Attach 'em if we got 'em. */
439 #if (NKBD > 0)
440 if (channel == 0) {
441 kma.kmta_name = "keyboard";
442 config_found(child, (void *)&kma, NULL,
443 CFARGS_NONE);
444 }
445 #endif
446 #if (NMS > 0)
447 if (channel == 1) {
448 kma.kmta_name = "mouse";
449 config_found(child, (void *)&kma, NULL,
450 CFARGS_NONE);
451 }
452 #endif
453 }
454 #endif
455 }
456
457 /*
458 * Now safe to install interrupt handlers. Note the arguments
459 * to the interrupt handlers aren't used. Note, we only do this
460 * once since both SCCs interrupt at the same level and vector.
461 */
462 bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc);
463 if (!(zsc->zsc_softintr = softint_establish(SOFTINT_SERIAL, zssoft, zsc)))
464 panic("zsattach: could not establish soft interrupt");
465
466 evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL,
467 device_xname(zsc->zsc_dev), "intr");
468
469
470 /*
471 * Set the master interrupt enable and interrupt vector.
472 * (common to both channels, do it on A)
473 */
474 cs = zsc->zsc_cs[0];
475 zs_lock_chan(cs);
476 /* interrupt vector */
477 zs_write_reg(cs, 2, zs_init_reg[2]);
478 /* master interrupt control (enable) */
479 zs_write_reg(cs, 9, zs_init_reg[9]);
480 zs_unlock_chan(cs);
481 }
482
483 static int
484 zs_print(void *aux, const char *name)
485 {
486 struct zsc_attach_args *args = aux;
487
488 if (name != NULL)
489 aprint_normal("%s: ", name);
490
491 if (args->channel != -1)
492 aprint_normal(" channel %d", args->channel);
493
494 return (UNCONF);
495 }
496
497 static int
498 zshard(void *arg)
499 {
500 struct zsc_softc *zsc = arg;
501 int rr3, rval;
502
503 rval = 0;
504 while ((rr3 = zsc_intr_hard(zsc))) {
505 /* Count up the interrupts. */
506 rval |= rr3;
507 zsc->zsc_intrcnt.ev_count++;
508 }
509 if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) ||
510 (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) &&
511 zsc->zsc_softintr) {
512 softint_schedule(zsc->zsc_softintr);
513 }
514 return (rval);
515 }
516
517 int
518 zscheckintr(void *arg)
519 {
520 struct zsc_softc *zsc;
521 int unit, rval;
522
523 rval = 0;
524 for (unit = 0; unit < zs_cd.cd_ndevs; unit++) {
525
526 zsc = device_lookup_private(&zs_cd, unit);
527 if (zsc == NULL)
528 continue;
529 rval = (zshard((void *)zsc) || rval);
530 }
531 return (rval);
532 }
533
534
535 /*
536 * We need this only for TTY_DEBUG purposes.
537 */
538 static void
539 zssoft(void *arg)
540 {
541 struct zsc_softc *zsc = arg;
542
543 #if 0 /* not yet */
544 /* Make sure we call the tty layer with tty_lock held. */
545 mutex_spin_enter(&tty_lock);
546 #endif
547 (void)zsc_intr_soft(zsc);
548 #ifdef TTY_DEBUG
549 {
550 struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private;
551 struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private;
552 if (zst0->zst_overflows || zst1->zst_overflows ) {
553 struct trapframe *frame = (struct trapframe *)arg;
554
555 printf("zs silo overflow from %p\n",
556 (long)frame->tf_pc);
557 }
558 }
559 #endif
560 #if 0 /* not yet */
561 mutex_spin_exit(&tty_lock);
562 #endif
563 }
564
565
566 /*
567 * Compute the current baud rate given a ZS channel.
568 */
569 static int
570 zs_get_speed(struct zs_chanstate *cs)
571 {
572 int tconst;
573
574 tconst = zs_read_reg(cs, 12);
575 tconst |= zs_read_reg(cs, 13) << 8;
576 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
577 }
578
579 /*
580 * MD functions for setting the baud rate and control modes.
581 */
582 int
583 zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */)
584 {
585 int tconst, real_bps;
586
587 if (bps == 0)
588 return (0);
589
590 #ifdef DIAGNOSTIC
591 if (cs->cs_brg_clk == 0)
592 panic("zs_set_speed");
593 #endif
594
595 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
596 if (tconst < 0)
597 return (EINVAL);
598
599 /* Convert back to make sure we can do it. */
600 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
601
602 /* XXX - Allow some tolerance here? */
603 if (real_bps != bps)
604 return (EINVAL);
605
606 cs->cs_preg[12] = tconst;
607 cs->cs_preg[13] = tconst >> 8;
608
609 /* Caller will stuff the pending registers. */
610 return (0);
611 }
612
613 int
614 zs_set_modes(struct zs_chanstate *cs, int cflag)
615 {
616
617 /*
618 * Output hardware flow control on the chip is horrendous:
619 * if carrier detect drops, the receiver is disabled, and if
620 * CTS drops, the transmitter is stopped IN MID CHARACTER!
621 * Therefore, NEVER set the HFC bit, and instead use the
622 * status interrupt to detect CTS changes.
623 */
624 zs_lock_chan(cs);
625 cs->cs_rr0_pps = 0;
626 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
627 cs->cs_rr0_dcd = 0;
628 if ((cflag & MDMBUF) == 0)
629 cs->cs_rr0_pps = ZSRR0_DCD;
630 } else
631 cs->cs_rr0_dcd = ZSRR0_DCD;
632 if ((cflag & CRTSCTS) != 0) {
633 cs->cs_wr5_dtr = ZSWR5_DTR;
634 cs->cs_wr5_rts = ZSWR5_RTS;
635 cs->cs_rr0_cts = ZSRR0_CTS;
636 } else if ((cflag & CDTRCTS) != 0) {
637 cs->cs_wr5_dtr = 0;
638 cs->cs_wr5_rts = ZSWR5_DTR;
639 cs->cs_rr0_cts = ZSRR0_CTS;
640 } else if ((cflag & MDMBUF) != 0) {
641 cs->cs_wr5_dtr = 0;
642 cs->cs_wr5_rts = ZSWR5_DTR;
643 cs->cs_rr0_cts = ZSRR0_DCD;
644 } else {
645 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
646 cs->cs_wr5_rts = 0;
647 cs->cs_rr0_cts = 0;
648 }
649 zs_unlock_chan(cs);
650
651 /* Caller will stuff the pending registers. */
652 return (0);
653 }
654
655
656 /*
657 * Read or write the chip with suitable delays.
658 */
659
660 u_char
661 zs_read_reg(struct zs_chanstate *cs, u_char reg)
662 {
663 u_char val;
664
665 *cs->cs_reg_csr = reg;
666 ZS_DELAY();
667 val = *cs->cs_reg_csr;
668 ZS_DELAY();
669 return (val);
670 }
671
672 void
673 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
674 {
675 *cs->cs_reg_csr = reg;
676 ZS_DELAY();
677 *cs->cs_reg_csr = val;
678 ZS_DELAY();
679 }
680
681 u_char
682 zs_read_csr(struct zs_chanstate *cs)
683 {
684 u_char val;
685
686 val = *cs->cs_reg_csr;
687 ZS_DELAY();
688 return (val);
689 }
690
691 void
692 zs_write_csr(struct zs_chanstate *cs, u_char val)
693 {
694 *cs->cs_reg_csr = val;
695 ZS_DELAY();
696 }
697
698 u_char
699 zs_read_data(struct zs_chanstate *cs)
700 {
701 u_char val;
702
703 val = *cs->cs_reg_data;
704 ZS_DELAY();
705 return (val);
706 }
707
708 void
709 zs_write_data(struct zs_chanstate *cs, u_char val)
710 {
711 *cs->cs_reg_data = val;
712 ZS_DELAY();
713 }
714
715 /****************************************************************
716 * Console support functions (Sun specific!)
717 * Note: this code is allowed to know about the layout of
718 * the chip registers, and uses that to keep things simple.
719 * XXX - I think I like the mvme167 code better. -gwr
720 ****************************************************************/
721
722 extern void Debugger(void);
723
724 /*
725 * Handle user request to enter kernel debugger.
726 */
727 void
728 zs_abort(struct zs_chanstate *cs)
729 {
730 volatile struct zschan *zc = zs_conschan_get;
731 int rr0;
732
733 /* Wait for end of break to avoid PROM abort. */
734 /* XXX - Limit the wait? */
735 do {
736 rr0 = zc->zc_csr;
737 ZS_DELAY();
738 } while (rr0 & ZSRR0_BREAK);
739
740 #if defined(KGDB)
741 zskgdb(cs);
742 #elif defined(DDB)
743 if (!db_active)
744 Debugger();
745 else
746 /* Debugger is probably hozed */
747 callrom();
748 #else
749 printf("stopping on keyboard abort\n");
750 callrom();
751 #endif
752 }
753
754
755 /*
756 * Polled input char.
757 */
758 int
759 zs_getc(void *arg)
760 {
761 volatile struct zschan *zc = arg;
762 int s, c, rr0;
763
764 s = splhigh();
765 /* Wait for a character to arrive. */
766 do {
767 rr0 = zc->zc_csr;
768 ZS_DELAY();
769 } while ((rr0 & ZSRR0_RX_READY) == 0);
770
771 c = zc->zc_data;
772 ZS_DELAY();
773 splx(s);
774
775 /*
776 * This is used by the kd driver to read scan codes,
777 * so don't translate '\r' ==> '\n' here...
778 */
779 return (c);
780 }
781
782 /*
783 * Polled output char.
784 */
785 void
786 zs_putc(void *arg, int c)
787 {
788 volatile struct zschan *zc = arg;
789 int s, rr0;
790
791 s = splhigh();
792
793 /* Wait for transmitter to become ready. */
794 do {
795 rr0 = zc->zc_csr;
796 ZS_DELAY();
797 } while ((rr0 & ZSRR0_TX_READY) == 0);
798
799 /*
800 * Send the next character.
801 * Now you'd think that this could be followed by a ZS_DELAY()
802 * just like all the other chip accesses, but it turns out that
803 * the `transmit-ready' interrupt isn't de-asserted until
804 * some period of time after the register write completes
805 * (more than a couple instructions). So to avoid stray
806 * interrupts we put in the 2us delay regardless of CPU model.
807 */
808 zc->zc_data = c;
809 delay(2);
810
811 splx(s);
812 }
813
814 /*****************************************************************/
815
816
817
818
819 /*
820 * Polled console input putchar.
821 */
822 static int
823 zscngetc(dev_t dev)
824 {
825 return (zs_getc(zs_conschan_get));
826 }
827
828 /*
829 * Polled console output putchar.
830 */
831 static void
832 zscnputc(dev_t dev, int c)
833 {
834 zs_putc(zs_conschan_put, c);
835 }
836
837 int swallow_zsintrs;
838
839 static void
840 zscnpollc(dev_t dev, int on)
841 {
842 /*
843 * Need to tell zs driver to acknowledge all interrupts or we get
844 * annoying spurious interrupt messages. This is because mucking
845 * with spl() levels during polling does not prevent interrupts from
846 * being generated.
847 */
848
849 if (on) swallow_zsintrs++;
850 else swallow_zsintrs--;
851 }
852
853 int
854 zs_console_flags(int promunit, int node, int channel)
855 {
856 int cookie, flags = 0;
857 char buf[255];
858
859 /*
860 * We'll just do the OBP grovelling down here since that's
861 * the only type of firmware we support.
862 */
863
864 /* Default to channel 0 if there are no explicit prom args */
865 cookie = 0;
866 if (node == prom_instance_to_package(prom_stdin())) {
867 if (prom_getoption("input-device", buf, sizeof buf) == 0 &&
868 strcmp("ttyb", buf) == 0)
869 cookie = 1;
870
871 if (channel == cookie)
872 flags |= ZS_HWFLAG_CONSOLE_INPUT;
873 }
874
875 if (node == prom_instance_to_package(prom_stdout())) {
876 if (prom_getoption("output-device", buf, sizeof buf) == 0 &&
877 strcmp("ttyb", buf) == 0)
878 cookie = 1;
879
880 if (channel == cookie)
881 flags |= ZS_HWFLAG_CONSOLE_OUTPUT;
882 }
883
884 return (flags);
885 }
886
887