Home | History | Annotate | Line # | Download | only in dev
zsvar.h revision 1.1.1.1.24.1
      1 /*	$NetBSD: zsvar.h,v 1.1.1.1.24.1 2000/07/18 16:23:21 mrg Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. All advertising materials mentioning features or use of this software
     25  *    must display the following acknowledgement:
     26  *	This product includes software developed by the University of
     27  *	California, Berkeley and its contributors.
     28  * 4. Neither the name of the University nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  *
     44  *	@(#)zsvar.h	8.1 (Berkeley) 6/11/93
     45  */
     46 
     47 /*
     48  * Register layout is machine-dependent...
     49  */
     50 
     51 struct zschan {
     52 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
     53 	u_char		zc_xxx0;
     54 	volatile u_char	zc_data;	/* data */
     55 	u_char		zc_xxx1;
     56 };
     57 
     58 struct zsdevice {
     59 	struct	zschan zs_chan[2];
     60 };
     61 
     62 /*
     63  * Software state, per zs channel.
     64  *
     65  * The zs chip has insufficient buffering, so we provide a software
     66  * buffer using a two-level interrupt scheme.  The hardware (high priority)
     67  * interrupt simply grabs the `cause' of the interrupt and stuffs it into
     68  * a ring buffer.  It then schedules a software interrupt; the latter
     69  * empties the ring as fast as it can, hoping to avoid overflow.
     70  *
     71  * Interrupts can happen because of:
     72  *	- received data;
     73  *	- transmit pseudo-DMA done; and
     74  *	- status change.
     75  * These are all stored together in the (single) ring.  The size of the
     76  * ring is a power of two, to make % operations fast.  Since we need two
     77  * bits to distinguish the interrupt type, and up to 16 for the received
     78  * data plus RR1 status, we use 32 bits per ring entry.
     79  *
     80  * When the value is a character + RR1 status, the character is in the
     81  * upper 8 bits of the RR1 status.
     82  */
     83 
     84 /* 0 is reserved (means "no interrupt") */
     85 #define	ZRING_RINT	1		/* receive data interrupt */
     86 #define	ZRING_XINT	2		/* transmit done interrupt */
     87 #define	ZRING_SINT	3		/* status change interrupt */
     88 
     89 #define	ZRING_TYPE(x)	((x) & 3)
     90 #define	ZRING_VALUE(x)	((x) >> 8)
     91 #define	ZRING_MAKE(t, v)	((t) | (v) << 8)
     92 
     93 /* forard decl */
     94 struct zs_softc;
     95 
     96 struct zs_chanstate {
     97 	struct	zs_chanstate *cs_next;	/* linked list for zshard() */
     98 	struct	zs_softc *cs_sc;	/* pointer to softc */
     99 	volatile struct zschan *cs_zc;	/* points to hardware regs */
    100 	struct	tty *cs_ttyp;		/* ### */
    101 	int	cs_unit;		/* unit number */
    102 
    103 	/*
    104 	 * We must keep a copy of the write registers as they are
    105 	 * mostly write-only and we sometimes need to set and clear
    106 	 * individual bits (e.g., in WR3).  Not all of these are
    107 	 * needed but 16 bytes is cheap and this makes the addressing
    108 	 * simpler.  Unfortunately, we can only write to some registers
    109 	 * when the chip is not actually transmitting, so whenever
    110 	 * we are expecting a `transmit done' interrupt the preg array
    111 	 * is allowed to `get ahead' of the current values.  In a
    112 	 * few places we must change the current value of a register,
    113 	 * rather than (or in addition to) the pending value; for these
    114 	 * cs_creg[] contains the current value.
    115 	 */
    116 	u_char	cs_creg[16];		/* current values */
    117 	u_char	cs_preg[16];		/* pending values */
    118 	u_char	cs_heldchange;		/* change pending (creg != preg) */
    119 	u_char	cs_rr0;			/* last rr0 processed */
    120 
    121 	/* pure software data, per channel */
    122 	char	cs_softcar;		/* software carrier */
    123 	char	cs_conk;		/* is console keyboard, decode L1-A */
    124 	char	cs_brkabort;		/* abort (as if via L1-A) on BREAK */
    125 	char	cs_kgdb;		/* enter debugger on frame char */
    126 	char	cs_consio;		/* port does /dev/console I/O */
    127 	char	cs_xxx;			/* (spare) */
    128 	int	cs_speed;		/* default baud rate (from ROM) */
    129 
    130 	/*
    131 	 * The transmit byte count and address are used for pseudo-DMA
    132 	 * output in the hardware interrupt code.  PDMA can be suspended
    133 	 * to get pending changes done; heldtbc is used for this.  It can
    134 	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
    135 	 */
    136 	int	cs_tbc;			/* transmit byte count */
    137 	int	cs_heldtbc;		/* held tbc while xmission stopped */
    138 	caddr_t	cs_tba;			/* transmit buffer address */
    139 
    140 	/*
    141 	 * Printing an overrun error message often takes long enough to
    142 	 * cause another overrun, so we only print one per second.
    143 	 */
    144 	long	cs_rotime;		/* time of last ring overrun */
    145 	long	cs_fotime;		/* time of last fifo overrun */
    146 
    147 	/*
    148 	 * The ring buffer.
    149 	 */
    150 	u_int	cs_rbget;		/* ring buffer `get' index */
    151 	volatile u_int cs_rbput;	/* ring buffer `put' index */
    152 	u_int	cs_ringmask;		/* mask, reflecting size of `rbuf' */
    153 	int	*cs_rbuf;		/* type, value pairs */
    154 };
    155 
    156 /*
    157  * N.B.: the keyboard is channel 1, the mouse channel 0; ttyb is 1, ttya
    158  * is 0.  In other words, the things are BACKWARDS.
    159  */
    160 #define	ZS_CHAN_A	1
    161 #define	ZS_CHAN_B	0
    162 
    163 /*
    164  * Macros to read and write individual registers (except 0) in a channel.
    165  *
    166  * On the SparcStation the 1.6 microsecond recovery time is
    167  * handled in hardware. On the older Sun4 machine it isn't, and
    168  * software must deal with the problem.
    169  *
    170  * However, it *is* a problem on some Sun4m's (i.e. the SS20) (XXX: why?).
    171  * Thus we leave in the delay.
    172  *
    173  * XXX: (ABB) Think about this more.
    174  */
    175 #if 0
    176 
    177 #define	ZS_READ(c, r)		zs_read(c, r)
    178 #define	ZS_WRITE(c, r, v)	zs_write(c, r, v)
    179 /*#define	ZS_DELAY()		(CPU_ISSUN4C ? (0) : delay(1))*/
    180 #define	ZS_DELAY()		(delay(1))
    181 
    182 #else /* SUN4 */
    183 
    184 #define	ZS_READ(c, r)		((c)->zc_csr = (r), (c)->zc_csr)
    185 #define	ZS_WRITE(c, r, v)	((c)->zc_csr = (r), (c)->zc_csr = (v))
    186 /* #define	ZS_DELAY()		(CPU_ISSUN4M ? delay(1) : 0) */
    187 #define	ZS_DELAY()		(0)
    188 
    189 #endif /* SUN4 */
    190