bsd_openprom.h revision 1.2.8.2 1 /* $NetBSD: bsd_openprom.h,v 1.2.8.2 2002/09/06 08:41:33 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Jan-Simon Pendry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)bsd_openprom.h 8.1 (Berkeley) 6/11/93
39 */
40
41 #if defined(_KERNEL_OPT)
42 #include "opt_sparc_arch.h"
43 #endif
44
45 /*
46 * Sun4m support by Aaron Brown, Harvard University.
47 * Changes Copyright (c) 1995 The President and Fellows of Harvard College.
48 * All rights reserved.
49 */
50
51 #ifndef _BSD_OPENPROM_H_
52 #define _BSD_OPENPROM_H_
53
54 /*
55 * This file defines the interface between the kernel and the Openboot PROM.
56 * N.B.: this has been tested only on interface versions 0 and 2 (we have
57 * never seen interface version 1).
58 */
59
60 /*
61 * The v0 interface tells us what virtual memory to scan to avoid PMEG
62 * conflicts, but the v2 interface fails to do so, and we must `magically'
63 * know where the OPENPROM lives in virtual space.
64 */
65 #define OPENPROM_STARTVADDR 0xffd00000
66 #define OPENPROM_ENDVADDR 0xfff00000
67
68 #define OPENPROM_MAGIC 0x10010407
69
70 /*
71 * Version 0 PROM vector device operations (collected here to emphasise that
72 * they are deprecated). Open and close are obvious. Read and write are
73 * segregated according to the device type (block, network, or character);
74 * this is unnecessary and was eliminated from the v2 device operations, but
75 * we are stuck with it.
76 *
77 * Seek is probably only useful on tape devices, since the only character
78 * devices are the serial ports.
79 *
80 * Note that a v0 device name is always exactly two characters ("sd", "le",
81 * and so forth).
82 */
83 struct v0devops {
84 int (*v0_open) __P((char *dev));
85 int (*v0_close) __P((int d));
86 int (*v0_rbdev) __P((int d, int nblks, int blkno, void *addr));
87 int (*v0_wbdev) __P((int d, int nblks, int blkno, void *addr));
88 int (*v0_wnet) __P((int d, int nbytes, void *addr));
89 int (*v0_rnet) __P((int d, int nbytes, void *addr));
90 int (*v0_rcdev) __P((int d, int nbytes, int, void *addr));
91 int (*v0_wcdev) __P((int d, int nbytes, int, void *addr));
92 int (*v0_seek) __P((int d, long offset, int whence));
93 };
94
95 /*
96 * Version 2 device operations. Open takes a device `path' such as
97 * /sbus/le@0,c00000,0 or /sbus/esp@.../sd@0,0, which means it can open
98 * anything anywhere, without any magic translation.
99 *
100 * The memory allocator and map functions are included here even though
101 * they relate only indirectly to devices (e.g., mmap is good for mapping
102 * device memory, and drivers need to allocate space in which to record
103 * the device state).
104 */
105 struct v2devops {
106 /*
107 * Convert an `instance handle' (acquired through v2_open()) to
108 * a `package handle', a.k.a. a `node'.
109 */
110 int (*v2_fd_phandle) __P((int d));
111
112 /* Memory allocation and release. */
113 void *(*v2_malloc) __P((caddr_t va, u_int sz));
114 void (*v2_free) __P((caddr_t va, u_int sz));
115
116 /* Device memory mapper. */
117 caddr_t (*v2_mmap) __P((caddr_t va, int asi, u_int pa, u_int sz));
118 void (*v2_munmap) __P((caddr_t va, u_int sz));
119
120 /* Device open, close, etc. */
121 int (*v2_open) __P((char *devpath));
122 void (*v2_close) __P((int d));
123 int (*v2_read) __P((int d, void *buf, int nbytes));
124 int (*v2_write) __P((int d, void *buf, int nbytes));
125 void (*v2_seek) __P((int d, int hi, int lo));
126
127 void (*v2_chain) __P((void)); /* ??? */
128 void (*v2_release) __P((void)); /* ??? */
129 };
130
131 /*
132 * The v0 interface describes memory regions with these linked lists.
133 * (The !$&@#+ v2 interface reformats these as properties, so that we
134 * have to extract them into local temporary memory and reinterpret them.)
135 */
136 struct v0mlist {
137 struct v0mlist *next;
138 caddr_t addr;
139 u_int nbytes;
140 };
141
142 /*
143 * V0 gives us three memory lists: Total physical memory, VM reserved to
144 * the PROM, and available physical memory (which, presumably, is just the
145 * total minus any pages mapped in the PROM's VM region). We can find the
146 * reserved PMEGs by scanning the taken VM. Unfortunately, the V2 prom
147 * forgot to provide taken VM, and we are stuck with scanning ``magic''
148 * addresses.
149 */
150 struct v0mem {
151 struct v0mlist **v0_phystot; /* physical memory */
152 struct v0mlist **v0_vmprom; /* VM used by PROM */
153 struct v0mlist **v0_physavail; /* available physical memory */
154 };
155
156 /*
157 * The version 0 PROM breaks up the string given to the boot command and
158 * leaves the decoded version behind.
159 */
160 struct v0bootargs {
161 char *ba_argv[8]; /* argv format for boot string */
162 char ba_args[100]; /* string space */
163 char ba_bootdev[2]; /* e.g., "sd" for `b sd(...' */
164 int ba_ctlr; /* controller # */
165 int ba_unit; /* unit # */
166 int ba_part; /* partition # */
167 char *ba_kernel; /* kernel to boot, e.g., "vmunix" */
168 void *ba_spare0; /* not decoded here XXX */
169 };
170
171 /*
172 * The version 2 PROM interface uses the more general, if less convenient,
173 * approach of passing the boot strings unchanged. We also get open file
174 * numbers for stdin and stdout (keyboard and screen, or whatever), for use
175 * with the v2 device ops.
176 */
177 struct v2bootargs {
178 char **v2_bootpath; /* V2: Path to boot device */
179 char **v2_bootargs; /* V2: Boot args */
180 int *v2_fd0; /* V2: Stdin descriptor */
181 int *v2_fd1; /* V2: Stdout descriptor */
182 };
183
184 /*
185 * The format used by the PROM to describe a physical address. These
186 * are typically found in a "reg" property.
187 */
188 struct openprom_addr {
189 int oa_space; /* address space (may be relative) */
190 u_int oa_base; /* address within space */
191 u_int oa_size; /* extent (number of bytes) */
192 };
193
194 /*
195 * The format used by the PROM to describe an address space window. These
196 * are typically found in a "range" property.
197 */
198 struct openprom_range {
199 int or_child_space; /* address space of child */
200 u_int or_child_base; /* offset in child's view of bus */
201 int or_parent_space; /* address space of parent */
202 u_int or_parent_base; /* offset in parent's view of bus */
203 u_int or_size; /* extent (number of bytes) */
204 };
205
206 /*
207 * The format used by the PROM to describe an interrupt. These are
208 * typically found in an "intr" property.
209 */
210 struct openprom_intr {
211 int oi_pri; /* interrupt priority */
212 int oi_vec; /* interrupt vector */
213 };
214
215 /*
216 * The following structure defines the primary PROM vector interface.
217 * The Boot PROM hands the kernel a pointer to this structure in %o0.
218 * There are numerous substructures defined below.
219 */
220 struct promvec {
221 /* Version numbers. */
222 u_int pv_magic; /* Magic number */
223 u_int pv_romvec_vers; /* interface version (0, 2) */
224 u_int pv_plugin_vers; /* ??? */
225 u_int pv_printrev; /* PROM rev # (* 10, e.g 1.9 = 19) */
226
227 /* Version 0 memory descriptors (see below). */
228 struct v0mem pv_v0mem; /* V0: Memory description lists. */
229
230 /* Node operations (see below). */
231 struct nodeops *pv_nodeops; /* node functions */
232
233 char **pv_bootstr; /* Boot command, eg sd(0,0,0)vmunix */
234
235 struct v0devops pv_v0devops; /* V0: device ops */
236
237 /*
238 * PROMDEV_* cookies. I fear these may vanish in lieu of fd0/fd1
239 * (see below) in future PROMs, but for now they work fine.
240 */
241 char *pv_stdin; /* stdin cookie */
242 char *pv_stdout; /* stdout cookie */
243 #define PROMDEV_KBD 0 /* input from keyboard */
244 #define PROMDEV_SCREEN 0 /* output to screen */
245 #define PROMDEV_TTYA 1 /* in/out to ttya */
246 #define PROMDEV_TTYB 2 /* in/out to ttyb */
247
248 /* Blocking getchar/putchar. NOT REENTRANT! (grr) */
249 int (*pv_getchar) __P((void));
250 void (*pv_putchar) __P((int ch));
251
252 /* Non-blocking variants that return -1 on error. */
253 int (*pv_nbgetchar) __P((void));
254 int (*pv_nbputchar) __P((int ch));
255
256 /* Put counted string (can be very slow). */
257 void (*pv_putstr) __P((char *str, int len));
258
259 /* Miscellany. */
260 void (*pv_reboot) __P((char *bootstr));
261 void (*pv_printf) __P((const char *fmt, ...));
262 void (*pv_abort) __P((void)); /* L1-A abort */
263 int *pv_ticks; /* Ticks since last reset */
264 __dead void (*pv_halt) __P((void)) __attribute__((noreturn));/* Halt! */
265 void (**pv_synchook) __P((void)); /* "sync" command hook */
266
267 /*
268 * This eval's a FORTH string. Unfortunately, its interface
269 * changed between V0 and V2, which gave us much pain.
270 */
271 union {
272 void (*v0_eval) __P((int len, char *str));
273 void (*v2_eval) __P((char *str));
274 } pv_fortheval;
275
276 struct v0bootargs **pv_v0bootargs; /* V0: Boot args */
277
278 /* Extract Ethernet address from network device. */
279 u_int (*pv_enaddr) __P((int d, char *enaddr));
280
281 struct v2bootargs pv_v2bootargs; /* V2: Boot args + std in/out */
282 struct v2devops pv_v2devops; /* V2: device operations */
283
284 int pv_spare[15];
285
286 /*
287 * The following is machine-dependent.
288 *
289 * The sun4c needs a PROM function to set a PMEG for another
290 * context, so that the kernel can map itself in all contexts.
291 * It is not possible simply to set the context register, because
292 * contexts 1 through N may have invalid translations for the
293 * current program counter. The hardware has a mode in which
294 * all memory references go to the PROM, so the PROM can do it
295 * easily.
296 */
297 void (*pv_setctxt) __P((int ctxt, caddr_t va, int pmeg));
298 #if defined(SUN4M) && defined(notyet)
299 /*
300 * The following are V3 ROM functions to handle MP machines in the
301 * Sun4m series. They have undefined results when run on a uniprocessor!
302 */
303 int (*pv_v3cpustart) __P((u_int module, u_int ctxtbl,
304 int context, caddr_t pc));
305 int (*pv_v3cpustop) __P((u_int module));
306 int (*pv_v3cpuidle) __P((u_int module));
307 int (*pv_v3cpuresume) __P((u_int module));
308 #endif
309 };
310
311 /*
312 * In addition to the global stuff defined in the PROM vectors above,
313 * the PROM has quite a collection of `nodes'. A node is described by
314 * an integer---these seem to be internal pointers, actually---and the
315 * nodes are arranged into an N-ary tree. Each node implements a fixed
316 * set of functions, as described below. The first two deal with the tree
317 * structure, allowing traversals in either breadth- or depth-first fashion.
318 * The rest deal with `properties'.
319 *
320 * A node property is simply a name/value pair. The names are C strings
321 * (NUL-terminated); the values are arbitrary byte strings (counted strings).
322 * Many values are really just C strings. Sometimes these are NUL-terminated,
323 * sometimes not, depending on the interface version; v0 seems to terminate
324 * and v2 not. Many others are simply integers stored as four bytes in
325 * machine order: you just get them and go. The third popular format is
326 * an `address', which is made up of one or more sets of three integers
327 * as defined below.
328 *
329 * N.B.: for the `next' functions, next(0) = first, and next(last) = 0.
330 * Whoever designed this part had good taste. On the other hand, these
331 * operation vectors are global, rather than per-node, yet the pointers
332 * are not in the openprom vectors but rather found by indirection from
333 * there. So the taste balances out.
334 */
335
336 struct nodeops {
337 /*
338 * Tree traversal.
339 */
340 int (*no_nextnode) __P((int node)); /* next(node) */
341 int (*no_child) __P((int node)); /* first child */
342
343 /*
344 * Property functions. Proper use of getprop requires calling
345 * proplen first to make sure it fits. Kind of a pain, but no
346 * doubt more convenient for the PROM coder.
347 */
348 int (*no_proplen) __P((int node, caddr_t name));
349 int (*no_getprop) __P((int node, caddr_t name, caddr_t val));
350 int (*no_setprop) __P((int node, caddr_t name, caddr_t val,
351 int len));
352 caddr_t (*no_nextprop) __P((int node, caddr_t name));
353 };
354
355 void romhalt __P((void))
356 __attribute__((__noreturn__));
357 void romboot __P((char *))
358 __attribute__((__noreturn__));
359
360 extern struct promvec *promvec;
361
362 #endif /* _BSD_OPENPROM_H_ */
363