1 1.135 andvar /* $NetBSD: cpu.h,v 1.135 2024/09/07 06:17:37 andvar Exp $ */ 2 1.1 eeh 3 1.1 eeh /* 4 1.1 eeh * Copyright (c) 1992, 1993 5 1.1 eeh * The Regents of the University of California. All rights reserved. 6 1.1 eeh * 7 1.1 eeh * This software was developed by the Computer Systems Engineering group 8 1.1 eeh * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 eeh * contributed to Berkeley. 10 1.1 eeh * 11 1.1 eeh * All advertising materials mentioning features or use of this software 12 1.1 eeh * must display the following acknowledgement: 13 1.1 eeh * This product includes software developed by the University of 14 1.1 eeh * California, Lawrence Berkeley Laboratory. 15 1.1 eeh * 16 1.1 eeh * Redistribution and use in source and binary forms, with or without 17 1.1 eeh * modification, are permitted provided that the following conditions 18 1.1 eeh * are met: 19 1.1 eeh * 1. Redistributions of source code must retain the above copyright 20 1.1 eeh * notice, this list of conditions and the following disclaimer. 21 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright 22 1.1 eeh * notice, this list of conditions and the following disclaimer in the 23 1.1 eeh * documentation and/or other materials provided with the distribution. 24 1.36 agc * 3. Neither the name of the University nor the names of its contributors 25 1.1 eeh * may be used to endorse or promote products derived from this software 26 1.1 eeh * without specific prior written permission. 27 1.1 eeh * 28 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 1.1 eeh * SUCH DAMAGE. 39 1.1 eeh * 40 1.1 eeh * @(#)cpu.h 8.4 (Berkeley) 1/5/94 41 1.1 eeh */ 42 1.1 eeh 43 1.1 eeh #ifndef _CPU_H_ 44 1.1 eeh #define _CPU_H_ 45 1.1 eeh 46 1.1 eeh /* 47 1.1 eeh * CTL_MACHDEP definitions. 48 1.1 eeh */ 49 1.13 eeh #define CPU_BOOTED_KERNEL 1 /* string: booted kernel name */ 50 1.33 pk #define CPU_BOOTED_DEVICE 2 /* string: device booted from */ 51 1.33 pk #define CPU_BOOT_ARGS 3 /* string: args booted with */ 52 1.33 pk #define CPU_ARCH 4 /* integer: cpu architecture version */ 53 1.101 macallan #define CPU_VIS 5 /* 0 - no VIS, 1 - VIS 1.0, etc. */ 54 1.1 eeh 55 1.124 mrg /* 56 1.124 mrg * This is exported via sysctl for cpuctl(8). 57 1.124 mrg */ 58 1.124 mrg struct cacheinfo { 59 1.124 mrg int c_itotalsize; 60 1.124 mrg int c_ilinesize; 61 1.124 mrg int c_dtotalsize; 62 1.124 mrg int c_dlinesize; 63 1.124 mrg int c_etotalsize; 64 1.124 mrg int c_elinesize; 65 1.124 mrg }; 66 1.124 mrg 67 1.95 mrg #if defined(_KERNEL) || defined(_KMEMUSER) 68 1.1 eeh /* 69 1.1 eeh * Exported definitions unique to SPARC cpu support. 70 1.1 eeh */ 71 1.1 eeh 72 1.37 tsutsui #if defined(_KERNEL_OPT) 73 1.133 ryo #include "opt_gprof.h" 74 1.17 thorpej #include "opt_multiprocessor.h" 75 1.17 thorpej #include "opt_lockdebug.h" 76 1.17 thorpej #endif 77 1.17 thorpej 78 1.1 eeh #include <machine/psl.h> 79 1.1 eeh #include <machine/reg.h> 80 1.74 martin #include <machine/pte.h> 81 1.6 mrg #include <machine/intr.h> 82 1.95 mrg #if defined(_KERNEL) 83 1.122 palle #include <machine/bus_defs.h> 84 1.43 chs #include <machine/cpuset.h> 85 1.96 mrg #include <sparc64/sparc64/intreg.h> 86 1.95 mrg #endif 87 1.112 palle #ifdef SUN4V 88 1.117 nakayama #include <machine/hypervisor.h> 89 1.112 palle #endif 90 1.17 thorpej 91 1.46 yamt #include <sys/cpu_data.h> 92 1.134 riastrad #include <sys/mutex.h> 93 1.75 nakayama #include <sys/evcnt.h> 94 1.95 mrg 95 1.19 eeh /* 96 1.19 eeh * The cpu_info structure is part of a 64KB structure mapped both the kernel 97 1.19 eeh * pmap and a single locked TTE a CPUINFO_VA for that particular processor. 98 1.19 eeh * Each processor's cpu_info is accessible at CPUINFO_VA only for that 99 1.19 eeh * processor. Other processors can access that through an additional mapping 100 1.19 eeh * in the kernel pmap. 101 1.19 eeh * 102 1.19 eeh * The 64KB page contains: 103 1.19 eeh * 104 1.19 eeh * cpu_info 105 1.19 eeh * interrupt stack (all remaining space) 106 1.19 eeh * idle PCB 107 1.19 eeh * idle stack (STACKSPACE - sizeof(PCB)) 108 1.19 eeh * 32KB TSB 109 1.19 eeh */ 110 1.19 eeh 111 1.17 thorpej struct cpu_info { 112 1.93 martin struct cpu_data ci_data; /* MI per-cpu data */ 113 1.93 martin 114 1.43 chs 115 1.42 petrov /* 116 1.42 petrov * SPARC cpu_info structures live at two VAs: one global 117 1.42 petrov * VA (so each CPU can access any other CPU's cpu_info) 118 1.42 petrov * and an alias VA CPUINFO_VA which is the same on each 119 1.42 petrov * CPU and maps to that CPU's cpu_info. Since the alias 120 1.42 petrov * CPUINFO_VA is how we locate our cpu_info, we have to 121 1.42 petrov * self-reference the global VA so that we can return it 122 1.42 petrov * in the curcpu() macro. 123 1.42 petrov */ 124 1.50 perry struct cpu_info * volatile ci_self; 125 1.42 petrov 126 1.20 eeh /* Most important fields first */ 127 1.34 thorpej struct lwp *ci_curlwp; 128 1.128 ad struct lwp *ci_onproc; /* current user LWP / kthread */ 129 1.32 chs struct pcb *ci_cpcb; 130 1.19 eeh struct cpu_info *ci_next; 131 1.20 eeh 132 1.34 thorpej struct lwp *ci_fplwp; 133 1.51 cdi 134 1.51 cdi void *ci_eintstack; 135 1.51 cdi 136 1.60 ad int ci_mtx_count; 137 1.60 ad int ci_mtx_oldspl; 138 1.60 ad 139 1.51 cdi /* Spinning up the CPU */ 140 1.53 cdi void (*ci_spinup)(void); 141 1.51 cdi paddr_t ci_paddr; 142 1.51 cdi 143 1.38 petrov int ci_cpuid; 144 1.20 eeh 145 1.124 mrg uint64_t ci_ver; 146 1.124 mrg 147 1.42 petrov /* CPU PROM information. */ 148 1.42 petrov u_int ci_node; 149 1.124 mrg const char *ci_name; 150 1.124 mrg 151 1.124 mrg /* This is for sysctl. */ 152 1.124 mrg struct cacheinfo ci_cacheinfo; 153 1.42 petrov 154 1.65 martin /* %tick and cpu frequency information */ 155 1.65 martin u_long ci_tick_increment; 156 1.99 macallan uint64_t ci_cpu_clockrate[2]; /* %tick */ 157 1.99 macallan uint64_t ci_system_clockrate[2]; /* %stick */ 158 1.65 martin 159 1.75 nakayama /* Interrupts */ 160 1.75 nakayama struct intrhand *ci_intrpending[16]; 161 1.77 nakayama struct intrhand *ci_tick_ih; 162 1.76 nakayama 163 1.76 nakayama /* Event counters */ 164 1.75 nakayama struct evcnt ci_tick_evcnt; 165 1.89 mrg 166 1.89 mrg /* This could be under MULTIPROCESSOR, but there's no good reason */ 167 1.76 nakayama struct evcnt ci_ipi_evcnt[IPI_EVCNT_NUM]; 168 1.75 nakayama 169 1.42 petrov int ci_flags; 170 1.42 petrov int ci_want_ast; 171 1.42 petrov int ci_want_resched; 172 1.68 martin int ci_idepth; 173 1.42 petrov 174 1.74 martin /* 175 1.74 martin * A context is simply a small number that differentiates multiple mappings 176 1.74 martin * of the same address. Contexts on the spitfire are 13 bits, but could 177 1.74 martin * be as large as 17 bits. 178 1.74 martin * 179 1.74 martin * Each context is either free or attached to a pmap. 180 1.74 martin * 181 1.74 martin * The context table is an array of pointers to psegs. Just dereference 182 1.74 martin * the right pointer and you get to the pmap segment tables. These are 183 1.74 martin * physical addresses, of course. 184 1.74 martin * 185 1.90 mrg * ci_ctx_lock protects this CPUs context allocation/free. 186 1.90 mrg * These are all allocated almost with in the same cacheline. 187 1.74 martin */ 188 1.90 mrg kmutex_t ci_ctx_lock; 189 1.74 martin int ci_pmap_next_ctx; 190 1.84 nakayama int ci_numctx; 191 1.74 martin paddr_t *ci_ctxbusy; 192 1.74 martin LIST_HEAD(, pmap) ci_pmap_ctxlist; 193 1.74 martin 194 1.74 martin /* 195 1.74 martin * The TSBs are per cpu too (since MMU context differs between 196 1.74 martin * cpus). These are just caches for the TLBs. 197 1.74 martin */ 198 1.74 martin pte_t *ci_tsb_dmmu; 199 1.74 martin pte_t *ci_tsb_immu; 200 1.74 martin 201 1.112 palle /* TSB description (sun4v). */ 202 1.112 palle struct tsb_desc *ci_tsb_desc; 203 1.132 nakayama 204 1.109 palle /* MMU Fault Status Area (sun4v). 205 1.109 palle * Will be initialized to the physical address of the bottom of 206 1.109 palle * the interrupt stack. 207 1.109 palle */ 208 1.123 palle paddr_t ci_mmufsa; 209 1.109 palle 210 1.111 palle /* 211 1.111 palle * sun4v mondo control fields 212 1.111 palle */ 213 1.111 palle paddr_t ci_cpumq; /* cpu mondo queue address */ 214 1.111 palle paddr_t ci_devmq; /* device mondo queue address */ 215 1.111 palle paddr_t ci_cpuset; /* mondo recipient address */ 216 1.111 palle paddr_t ci_mondo; /* mondo message address */ 217 1.131 palle 218 1.102 nakayama /* probe fault in PCI config space reads */ 219 1.102 nakayama bool ci_pci_probe; 220 1.102 nakayama bool ci_pci_fault; 221 1.102 nakayama 222 1.55 mrg volatile void *ci_ddb_regs; /* DDB regs */ 223 1.131 palle 224 1.131 palle void (*ci_idlespin)(void); 225 1.133 ryo 226 1.133 ryo #if defined(GPROF) && defined(MULTIPROCESSOR) 227 1.133 ryo struct gmonparam *ci_gmon; /* MI per-cpu GPROF */ 228 1.133 ryo #endif 229 1.17 thorpej }; 230 1.17 thorpej 231 1.95 mrg #endif /* _KERNEL || _KMEMUSER */ 232 1.95 mrg 233 1.95 mrg #ifdef _KERNEL 234 1.95 mrg 235 1.42 petrov #define CPUF_PRIMARY 1 236 1.42 petrov 237 1.42 petrov /* 238 1.42 petrov * CPU boot arguments. Used by secondary CPUs at the bootstrap time. 239 1.42 petrov */ 240 1.42 petrov struct cpu_bootargs { 241 1.42 petrov u_int cb_node; /* PROM CPU node */ 242 1.50 perry volatile int cb_flags; 243 1.42 petrov 244 1.42 petrov vaddr_t cb_ktext; 245 1.42 petrov paddr_t cb_ktextp; 246 1.42 petrov vaddr_t cb_ektext; 247 1.42 petrov 248 1.42 petrov vaddr_t cb_kdata; 249 1.42 petrov paddr_t cb_kdatap; 250 1.42 petrov vaddr_t cb_ekdata; 251 1.42 petrov 252 1.42 petrov paddr_t cb_cpuinfo; 253 1.113 palle int cb_cputyp; 254 1.42 petrov }; 255 1.42 petrov 256 1.42 petrov extern struct cpu_bootargs *cpu_args; 257 1.42 petrov 258 1.89 mrg #if defined(MULTIPROCESSOR) 259 1.47 briggs extern int sparc_ncpus; 260 1.89 mrg #else 261 1.89 mrg #define sparc_ncpus 1 262 1.89 mrg #endif 263 1.89 mrg 264 1.19 eeh extern struct cpu_info *cpus; 265 1.83 nakayama extern struct pool_cache *fpstate_cache; 266 1.17 thorpej 267 1.129 martin /* CURCPU_INT() a local (per CPU) view of our cpu_info */ 268 1.129 martin #define CURCPU_INT() ((struct cpu_info *)CPUINFO_VA) 269 1.135 andvar /* in general we prefer the globally visible pointer */ 270 1.129 martin #define curcpu() (CURCPU_INT()->ci_self) 271 1.66 martin #define cpu_number() (curcpu()->ci_index) 272 1.42 petrov #define CPU_IS_PRIMARY(ci) ((ci)->ci_flags & CPUF_PRIMARY) 273 1.42 petrov 274 1.105 christos #define CPU_INFO_ITERATOR int __unused 275 1.105 christos #define CPU_INFO_FOREACH(cii, ci) ci = cpus; ci != NULL; ci = ci->ci_next 276 1.43 chs 277 1.129 martin /* these are only valid on the local cpu */ 278 1.129 martin #define curlwp CURCPU_INT()->ci_curlwp 279 1.129 martin #define fplwp CURCPU_INT()->ci_fplwp 280 1.129 martin #define curpcb CURCPU_INT()->ci_cpcb 281 1.129 martin #define want_ast CURCPU_INT()->ci_want_ast 282 1.42 petrov 283 1.1 eeh /* 284 1.1 eeh * definitions of cpu-dependent requirements 285 1.1 eeh * referenced in generic code 286 1.1 eeh */ 287 1.42 petrov #define cpu_wait(p) /* nothing */ 288 1.48 martin void cpu_proc_fork(struct proc *, struct proc *); 289 1.38 petrov 290 1.74 martin /* run on the cpu itself */ 291 1.74 martin void cpu_pmap_init(struct cpu_info *); 292 1.74 martin /* run upfront to prepare the cpu_info */ 293 1.74 martin void cpu_pmap_prepare(struct cpu_info *, bool); 294 1.74 martin 295 1.118 palle /* Helper functions to retrieve cache info */ 296 1.118 palle int cpu_ecache_associativity(int node); 297 1.118 palle int cpu_ecache_size(int node); 298 1.118 palle 299 1.38 petrov #if defined(MULTIPROCESSOR) 300 1.51 cdi extern vaddr_t cpu_spinup_trampoline; 301 1.51 cdi 302 1.51 cdi extern char *mp_tramp_code; 303 1.51 cdi extern u_long mp_tramp_code_len; 304 1.115 martin extern u_long mp_tramp_dtlb_slots, mp_tramp_itlb_slots; 305 1.51 cdi extern u_long mp_tramp_func; 306 1.51 cdi extern u_long mp_tramp_ci; 307 1.51 cdi 308 1.53 cdi void cpu_hatch(void); 309 1.53 cdi void cpu_boot_secondary_processors(void); 310 1.57 martin 311 1.57 martin /* 312 1.57 martin * Call a function on other cpus: 313 1.69 martin * multicast - send to everyone in the sparc64_cpuset_t 314 1.57 martin * broadcast - send to to all cpus but ourselves 315 1.57 martin * send - send to just this cpu 316 1.92 martin * The called function do not follow the C ABI, so need to be coded in 317 1.92 martin * assembler. 318 1.57 martin */ 319 1.91 martin typedef void (* ipifunc_t)(void *, void *); 320 1.57 martin 321 1.76 nakayama void sparc64_multicast_ipi(sparc64_cpuset_t, ipifunc_t, uint64_t, uint64_t); 322 1.76 nakayama void sparc64_broadcast_ipi(ipifunc_t, uint64_t, uint64_t); 323 1.114 palle extern void (*sparc64_send_ipi)(int, ipifunc_t, uint64_t, uint64_t); 324 1.92 martin 325 1.92 martin /* 326 1.92 martin * Call an arbitrary C function on another cpu (or all others but ourself) 327 1.92 martin */ 328 1.92 martin typedef void (*ipi_c_call_func_t)(void*); 329 1.92 martin void sparc64_generic_xcall(struct cpu_info*, ipi_c_call_func_t, void*); 330 1.92 martin 331 1.38 petrov #endif 332 1.35 nakayama 333 1.94 martin /* Provide %pc of a lwp */ 334 1.94 martin #define LWP_PC(l) ((l)->l_md.md_tf->tf_pc) 335 1.94 martin 336 1.1 eeh /* 337 1.1 eeh * Arguments to hardclock, softclock and gatherstats encapsulate the 338 1.1 eeh * previous machine state in an opaque clockframe. The ipl is here 339 1.1 eeh * as well for strayintr (see locore.s:interrupt and intr.c:strayintr). 340 1.1 eeh * Note that CLKF_INTR is valid only if CLKF_USERMODE is false. 341 1.1 eeh */ 342 1.1 eeh struct clockframe { 343 1.14 eeh struct trapframe64 t; 344 1.1 eeh }; 345 1.1 eeh 346 1.1 eeh #define CLKF_USERMODE(framep) (((framep)->t.tf_tstate & TSTATE_PRIV) == 0) 347 1.1 eeh #define CLKF_PC(framep) ((framep)->t.tf_pc) 348 1.30 eeh /* Since some files in sys/kern do not know BIAS, I'm using 0x7ff here */ 349 1.30 eeh #define CLKF_INTR(framep) \ 350 1.30 eeh ((!CLKF_USERMODE(framep))&& \ 351 1.30 eeh (((framep)->t.tf_out[6] & 1 ) ? \ 352 1.30 eeh (((vaddr_t)(framep)->t.tf_out[6] < \ 353 1.30 eeh (vaddr_t)EINTSTACK-0x7ff) && \ 354 1.30 eeh ((vaddr_t)(framep)->t.tf_out[6] > \ 355 1.30 eeh (vaddr_t)INTSTACK-0x7ff)) : \ 356 1.30 eeh (((vaddr_t)(framep)->t.tf_out[6] < \ 357 1.30 eeh (vaddr_t)EINTSTACK) && \ 358 1.30 eeh ((vaddr_t)(framep)->t.tf_out[6] > \ 359 1.30 eeh (vaddr_t)INTSTACK)))) 360 1.1 eeh 361 1.1 eeh /* 362 1.1 eeh * Give a profiling tick to the current process when the user profiling 363 1.1 eeh * buffer pages are invalid. On the sparc, request an ast to send us 364 1.1 eeh * through trap(), marking the proc as needing a profiling tick. 365 1.1 eeh */ 366 1.60 ad #define cpu_need_proftick(l) ((l)->l_pflag |= LP_OWEUPC, want_ast = 1) 367 1.1 eeh 368 1.1 eeh /* 369 1.78 nakayama * Notify an LWP that it has a signal pending, process as soon as possible. 370 1.1 eeh */ 371 1.78 nakayama void cpu_signotify(struct lwp *); 372 1.1 eeh 373 1.121 palle 374 1.1 eeh /* 375 1.1 eeh * Interrupt handler chains. Interrupt handlers should return 0 for 376 1.1 eeh * ``not me'' or 1 (``I took care of it''). intr_establish() inserts a 377 1.1 eeh * handler into the list. The handler is called with its (single) 378 1.1 eeh * argument, or with a pointer to a clockframe if ih_arg is NULL. 379 1.1 eeh */ 380 1.1 eeh struct intrhand { 381 1.53 cdi int (*ih_fun)(void *); 382 1.18 mrg void *ih_arg; 383 1.70 martin /* if we have to take the biglock, we interpose a wrapper 384 1.70 martin * and need to save the original function and arg */ 385 1.70 martin int (*ih_realfun)(void *); 386 1.70 martin void *ih_realarg; 387 1.18 mrg short ih_number; /* interrupt number */ 388 1.18 mrg /* the H/W provides */ 389 1.23 eeh char ih_pil; /* interrupt priority */ 390 1.21 eeh struct intrhand *ih_next; /* global list */ 391 1.26 eeh struct intrhand *ih_pending; /* interrupt queued */ 392 1.52 cdi volatile uint64_t *ih_map; /* Interrupt map reg */ 393 1.52 cdi volatile uint64_t *ih_clr; /* clear interrupt reg */ 394 1.119 palle void (*ih_ack)(struct intrhand *); /* ack interrupt function */ 395 1.120 palle bus_space_tag_t ih_bus; /* parent bus */ 396 1.97 macallan struct evcnt ih_cnt; /* counter for vmstat */ 397 1.97 macallan uint32_t ih_ivec; 398 1.97 macallan char ih_name[32]; /* name for the above */ 399 1.1 eeh }; 400 1.29 mrg extern struct intrhand *intrhand[]; 401 1.1 eeh extern struct intrhand *intrlev[MAXINTNUM]; 402 1.1 eeh 403 1.81 martin void intr_establish(int level, bool mpsafe, struct intrhand *); 404 1.80 ad void *sparc_softintr_establish(int, int (*)(void *), void *); 405 1.80 ad void sparc_softintr_schedule(void *); 406 1.80 ad void sparc_softintr_disestablish(void *); 407 1.119 palle struct intrhand *intrhand_alloc(void); 408 1.42 petrov 409 1.106 palle /* cpu.c */ 410 1.106 palle int cpu_myid(void); 411 1.106 palle 412 1.1 eeh /* disksubr.c */ 413 1.1 eeh struct dkbad; 414 1.53 cdi int isbad(struct dkbad *bt, int, int, int); 415 1.1 eeh /* machdep.c */ 416 1.62 christos void * reserve_dumppages(void *); 417 1.1 eeh /* clock.c */ 418 1.1 eeh struct timeval; 419 1.76 nakayama int tickintr(void *); /* level 10/14 (tick) interrupt code */ 420 1.99 macallan int stickintr(void *); /* system tick interrupt code */ 421 1.103 macallan int stick2eintr(void *); /* system tick interrupt code */ 422 1.53 cdi int clockintr(void *); /* level 10 (clock) interrupt code */ 423 1.53 cdi int statintr(void *); /* level 14 (statclock) interrupt code */ 424 1.77 nakayama int schedintr(void *); /* level 10 (schedclock) interrupt code */ 425 1.76 nakayama void tickintr_establish(int, int (*)(void *)); 426 1.99 macallan void stickintr_establish(int, int (*)(void *)); 427 1.103 macallan void stick2eintr_establish(int, int (*)(void *)); 428 1.103 macallan 429 1.1 eeh /* locore.s */ 430 1.14 eeh struct fpstate64; 431 1.53 cdi void savefpstate(struct fpstate64 *); 432 1.53 cdi void loadfpstate(struct fpstate64 *); 433 1.56 martin void clearfpstate(void); 434 1.53 cdi uint64_t probeget(paddr_t, int, int); 435 1.53 cdi int probeset(paddr_t, int, int, uint64_t); 436 1.110 palle void setcputyp(int); 437 1.42 petrov 438 1.50 perry #define write_all_windows() __asm volatile("flushw" : : ) 439 1.50 perry #define write_user_windows() __asm volatile("flushw" : : ) 440 1.42 petrov 441 1.1 eeh struct pcb; 442 1.53 cdi void snapshot(struct pcb *); 443 1.53 cdi struct frame *getfp(void); 444 1.88 mrg void switchtoctx_us(int); 445 1.88 mrg void switchtoctx_usiii(int); 446 1.85 nakayama void next_tick(long); 447 1.99 macallan void next_stick(long); 448 1.126 palle void next_stick_init(void); 449 1.1 eeh /* trap.c */ 450 1.98 martin void cpu_vmspace_exec(struct lwp *, vaddr_t, vaddr_t); 451 1.53 cdi int rwindow_save(struct lwp *); 452 1.1 eeh /* cons.c */ 453 1.53 cdi int cnrom(void); 454 1.1 eeh /* zs.c */ 455 1.53 cdi void zsconsole(struct tty *, int, int, void (**)(struct tty *, int)); 456 1.1 eeh /* fb.c */ 457 1.53 cdi void fb_unblank(void); 458 1.1 eeh /* kgdb_stub.c */ 459 1.1 eeh #ifdef KGDB 460 1.53 cdi void kgdb_attach(int (*)(void *), void (*)(void *, int), void *); 461 1.53 cdi void kgdb_connect(int); 462 1.53 cdi void kgdb_panic(void); 463 1.1 eeh #endif 464 1.5 mrg /* emul.c */ 465 1.53 cdi int fixalign(struct lwp *, struct trapframe64 *); 466 1.53 cdi int emulinstr(vaddr_t, struct trapframe64 *); 467 1.1 eeh 468 1.1 eeh #endif /* _KERNEL */ 469 1.1 eeh #endif /* _CPU_H_ */ 470